Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of deaths per day in the United States from 1950 to 2025. The x-axis represents the years, abbreviated from '50 to '24, while the y-axis indicates the daily number of deaths. Over this 75-year period, the number of deaths per day ranges from a low of 4,054 in 1950 to a high of 9,570 in 2021. Notable figures include 6,855 deaths in 2010 and 8,333 in 2024. The data shows a general upward trend in daily deaths over the decades, with recent years experiencing some fluctuations. This information is presented in a line graph format, effectively highlighting the long-term trends and yearly variations in daily deaths across the United States.
January was the month that featured the highest number of deaths in 2024, with more than 48,760 registered deceases. In contrast, September had the lowest number, at 31,632 deaths. The latest figures reveal that more people died in Spain than were being born in 2024, with figures reaching over 439,146 deaths versus 322,00 newborns. The number of deaths experienced an upward trend over the past years, presumably due to Spain’s aging population. Circulatory system diseases and cancer ranked as the most common causes of death in Spain The cause of death can vary significantly across the globe and depends highly on economic development, the presence of a competent healthcare system and one’s choices in lifestyle. In Spain, diseases related to the circulatory system, certain infectious and parasitic diseases, and neoplasms (cancer) ranked as the main causes of death, all three with over 275,000 cases in 2022. The annual number of deaths as a result of a disease of the circulatory system maintained steadily over the most recent years, with the illness being more common among female than male individuals. Cancer numbers in Spain The number of deaths as a result of a cancer grew steadily in Spain for both women and men, although the disease seems to affect more male individuals than female, with 67,911 cases occurring in men and 46,917 in women according to the latest data. Furthermore, of the total 276,260 new cases of cancer in Spain in 2023, nearly 158,500 were diagnosed among male individuals.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the number of deaths per year in the United States from 1950 to 2025. The x-axis represents the years, abbreviated from '50 to '25, while the y-axis indicates the annual number of deaths. Over this 75-year period, the number of deaths ranges from a low of 1,479,684 in 1950 to a high of 3,492,879 in 2021. Notable figures include 2,430,923 deaths in 2001 and 3,090,000 projected deaths in 2024. The data exhibits a general upward trend in annual deaths over the decades, with significant increases in recent years. This information is presented in a line graph format, effectively highlighting the long-term trends and yearly variations in deaths across the United States.
In 2023, about **** million deaths were reported in the United States. This figure is an increase from **** million deaths reported in 1990, and from **** in 2019. This sudden increase can be attributed to the COVID-19 pandemic.
https://coolest-gadgets.com/privacy-policyhttps://coolest-gadgets.com/privacy-policy
U.S. Death Statistics: The death rate in the United States reflects various factors such as health issues, lifestyle changes, and other social factors that impact people's lives. Life expectancy has generally improved due to advancements in American healthcare, but several causes of death remain significant, including heart disease, cancer, and accidents. The opioid crisis, along with mental health challenges like suicide, also adds to the national death rate.
The COVID-19 pandemic further influenced the death statistics, showing the importance of public health measures. As the population is growing enormously, thus people may pass away from age-related conditions, highlighting the need for better healthcare access and preventive measures to improve overall well-being
The number of deaths per week in Sweden was higher from week 12 to week 26 in 2020 than it was in the years 2015 to 2019. Moreover, it increased from week 46 in 2020 and fell below the average of 2015 to 2019 in week five in 2021. Several of the deaths in 2020 were related to the coronavirus pandemic. In 2022, the number of deaths per week decreased from week seven, but was high in the last weeks of the year and the first weeks of 2023, before falling again. Causes of death In 2022, diseases of the circulatory system were the most common cause of death in Sweden. Over 28,000 deaths were caused by this type of disease that year. Cancerous tumors caused the second highest number of deaths in Sweden. COVID-19 in Sweden Sweden is the Nordic country that has reported the highest number of COVID-19 deaths since the outbreak of the pandemic. All in all, the number of deaths in Sweden in 2023 amounted to nearly 95,000.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, by age, sex, region and Index of Multiple Deprivation (IMD), in the latest weeks for which data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Israel IL: Death Rate: Crude: per 1000 People data was reported at 5.100 Ratio in 2016. This records a decrease from the previous number of 5.300 Ratio for 2015. Israel IL: Death Rate: Crude: per 1000 People data is updated yearly, averaging 6.300 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 7.200 Ratio in 1972 and a record low of 5.100 Ratio in 2016. Israel IL: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Israel – Table IL.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
Count of COVID-19-associated deaths by date of death. Deaths reported to either the OCME or DPH are included in the COVID-19 data. COVID-19-associated deaths include persons who tested positive for COVID-19 around the time of death and persons who were not tested for COVID-19 whose death certificate lists COVID-19 disease as a cause of death or a significant condition contributing to death.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Note the counts in this dataset may vary from the death counts in the other COVID-19-related datasets published on data.ct.gov, where deaths are counted on the date reported rather than the date of death
This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates.
Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file.
Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death.
Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly.
The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington.
Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf).
Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year.
Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Curacao DD: Death Rate: Crude: per 1000 People data was reported at 9.700 Ratio in 2023. This records a decrease from the previous number of 10.400 Ratio for 2022. Curacao DD: Death Rate: Crude: per 1000 People data is updated yearly, averaging 7.400 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 11.100 Ratio in 2021 and a record low of 6.355 Ratio in 1979. Curacao DD: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Curacao – Table CW.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.;(1) United Nations Population Division. World Population Prospects: 2024 Revision; (2) Statistical databases and publications from national statistical offices; (3) Eurostat: Demographic Statistics; (4) United Nations Statistics Division. Population and Vital Statistics Reprot (various years).;Weighted average;
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of deaths from fentanyl in the United States from 1999 to 2022. The x-axis represents the years, spanning from '99 to '22, while the y-axis displays the annual number of fentanyl-related fatalities. Over this 24-year period, deaths rise dramatically from 730 in 1999 to a peak of 73,838 in 2022. Notable milestones include an increase to 1,742 deaths in 2005, a significant jump to 9,580 in 2015, and a sharp escalation to 70,601 deaths by 2021. The data reveals a consistent and severe upward trend in fentanyl-related deaths, particularly accelerating in the mid-2010s. This information is presented in a line graph format, effectively highlighting the dramatic increase in fatalities due to fentanyl across the United States over the specified years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan: Death rate, per 1000 people: The latest value from 2022 is 12.9 deaths per 1000 people, an increase from 11.7 deaths per 1000 people in 2021. In comparison, the world average is 8.37 deaths per 1000 people, based on data from 195 countries. Historically, the average for Japan from 1960 to 2022 is 7.8 deaths per 1000 people. The minimum value, 6 deaths per 1000 people, was reached in 1979 while the maximum of 12.9 deaths per 1000 people was recorded in 2022.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Premature Death Rate for Tulsa County, OK (CDC20N2U040143) from 1999 to 2020 about Tulsa County, OK; Tulsa; premature; death; OK; rate; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Death rate, crude (per 1,000 people) in Ghana was reported at 7.04 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Ghana - Death rate, crude - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Death rate, crude (per 1,000 people) in Suriname was reported at 6.649 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Suriname - Death rate, crude - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Costa Rica CR: Death Rate: Crude: per 1000 People data was reported at 5.457 Ratio in 2023. This records a decrease from the previous number of 6.106 Ratio for 2022. Costa Rica CR: Death Rate: Crude: per 1000 People data is updated yearly, averaging 4.296 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 8.663 Ratio in 1960 and a record low of 3.676 Ratio in 1990. Costa Rica CR: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Costa Rica – Table CR.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.;(1) United Nations Population Division. World Population Prospects: 2024 Revision; (2) Statistical databases and publications from national statistical offices; (3) Eurostat: Demographic Statistics; (4) United Nations Statistics Division. Population and Vital Statistics Reprot (various years).;Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USA: The number of deaths per 1000 people, per year: The latest value from is deaths per 1000 people, unavailable from deaths per 1000 people in . In comparison, the world average is 0.00 deaths per 1000 people, based on data from countries. Historically, the average for the USA from to is deaths per 1000 people. The minimum value, deaths per 1000 people, was reached in while the maximum of deaths per 1000 people was recorded in .
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Premature Death Rate for Bronx County, NY (CDC20N2U036005) from 1999 to 2020 about Bronx County, NY; premature; death; New York; NY; rate; and USA.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of deaths per day in the United States from 1950 to 2025. The x-axis represents the years, abbreviated from '50 to '24, while the y-axis indicates the daily number of deaths. Over this 75-year period, the number of deaths per day ranges from a low of 4,054 in 1950 to a high of 9,570 in 2021. Notable figures include 6,855 deaths in 2010 and 8,333 in 2024. The data shows a general upward trend in daily deaths over the decades, with recent years experiencing some fluctuations. This information is presented in a line graph format, effectively highlighting the long-term trends and yearly variations in daily deaths across the United States.