The Global Population Count Grid Time Series Estimates provide a back-cast time series of population grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population count grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.
The Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Future Estimates consists of estimates of human population for the years 2005, 2010, and 2015 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population counts that the grids are derived from are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics. All of the grids have been adjusted to match United Nations national level population estimates. The population count grids contain estimates of the number of persons per grid cell. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing total population for the world by year from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, female (% of total population) in World was reported at 49.71 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on May of 2025.
Over the past 23 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2023, 4.05 billion were men and 4.01 billion were women. One-quarter of the world's total population in 2024 was below 15 years.
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
As of February 2025, 5.56 billion individuals worldwide were internet users, which amounted to 67.9 percent of the global population. Of this total, 5.24 billion, or 63.9 percent of the world's population, were social media users. Global internet usage Connecting billions of people worldwide, the internet is a core pillar of the modern information society. Northern Europe ranked first among worldwide regions by the share of the population using the internet in 20254. In The Netherlands, Norway and Saudi Arabia, 99 percent of the population used the internet as of February 2025. North Korea was at the opposite end of the spectrum, with virtually no internet usage penetration among the general population, ranking last worldwide. Eastern Asia was home to the largest number of online users worldwide – over 1.34 billion at the latest count. Southern Asia ranked second, with around 1.2 billion internet users. China, India, and the United States rank ahead of other countries worldwide by the number of internet users. Worldwide internet user demographics As of 2024, the share of female internet users worldwide was 65 percent, five percent less than that of men. Gender disparity in internet usage was bigger in African countries, with around a ten percent difference. Worldwide regions, like the Commonwealth of Independent States and Europe, showed a smaller usage gap between these two genders. As of 2024, global internet usage was higher among individuals between 15 and 24 years old across all regions, with young people in Europe representing the most significant usage penetration, 98 percent. In comparison, the worldwide average for the age group 15–24 years was 79 percent. The income level of the countries was also an essential factor for internet access, as 93 percent of the population of the countries with high income reportedly used the internet, as opposed to only 27 percent of the low-income markets.
Global population count, by pixel, from the Gridded Population of the World Dataset developed by CIESEN, Columbia University and NASA SEDAC. The data represents the year 2020 at a 30 arc-second (1km) resolution. Data was downloaded and converted to a Cloud Optimized GeoTiff with internal overviews by NatCap team members. For more information on the dataset, please see the metadata (YML) file. More information on the source dataset can be found here: https://www.earthdata.nasa.gov/data/catalog/sedac-ciesin-sedac-gpwv4-popcount-r11-4.11
As a source of animal and plant population data, The Global Population Dynamics Database is unrivalled. Nearly five thousand separate time series are available here. In addition to all the population counts, there are taxonomic details of over 1400 species. The type of data contained in the GPDD varies enormously, from annual counts of mammals or birds at individual sampling sites, to weekly counts of zooplankton and other marine fauna. The project commenced in October 1994, following discussions on ways in which the collaborating partners could make a practical and enduring contribution to research into population dynamics. A small team was assembled and, with assistance and advice from numerous interested parties we decided to construct the database using the popular Microsoft Access platform. After an initial design phase, the major task has been that of locating, extracting, entering and validating the data in all the various tables. Now, nearly 5000 individual datasets have been entered onto the GPDD. The Global Population Dynamics Database comprises six Tables of data and information. The tables are linked to each other as shown in the diagram shown at http://cpbnts1.bio.ic.ac.uk/gpdd/Structur.htm. Referential integrity is maintained through record ID numbers which are held, along with other information in the Main Table. It's structure obeys all the rules of a standard relational database.
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Gain in-depth insights into People Counter Market Report from Market Research Intellect, valued at USD 1.2 billion in 2024, and projected to grow to USD 2.5 billion by 2033 with a CAGR of 9.5% from 2026 to 2033.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.
Thank you for your continued support of the GlobPOP.
If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.
Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.
Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.
With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.
The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)
Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:
GlobPOP_Count_30arc_1990_I32
Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population "Count" or population "Density"
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year "1990"
Field 5: Data type is I32(Int 32) or F32(Float32)
Please refer to the paper for detailed information:
Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.
The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global indoor people counter market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 3.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. This remarkable growth can be attributed to the increasing need for accurate people counting solutions across various industries, driven by advancements in technology and a heightened focus on enhancing customer experiences and operational efficiency.
One of the key growth factors for the indoor people counter market is the rising demand for data analytics in retail settings. Retailers are increasingly leveraging people counting systems to gain insights into customer behavior, optimize store layouts, and enhance marketing strategies. With the integration of advanced technologies such as artificial intelligence and machine learning, these systems are becoming more accurate and sophisticated, further driving their adoption. Additionally, the pressing need for real-time data to make informed business decisions is propelling the market's growth.
Another significant factor contributing to market growth is the adoption of people counting solutions in transportation hubs, such as airports and train stations. Transportation authorities are utilizing these systems to manage passenger flow, ensure safety, and improve infrastructure planning. The growing emphasis on smart city initiatives and the expansion of public transport networks in urban areas are further fueling the demand for indoor people counters. Moreover, government regulations and security concerns are prompting the deployment of these systems in public spaces.
The hospitality industry is also a major contributor to the growth of this market. Hotels and event venues are increasingly employing people counting technologies to manage crowd control, enhance guest experiences, and optimize resource allocation. The ability to monitor occupancy levels in real time is crucial for maintaining safety standards and ensuring compliance with health regulations, particularly in the context of the COVID-19 pandemic. As the hospitality sector continues to recover and adapt to new norms, the adoption of indoor people counters is expected to rise.
Regionally, North America holds a significant share of the indoor people counter market, driven by the presence of major technology providers and extensive retail and transportation infrastructure. The region's focus on adopting cutting-edge technologies and the high penetration of advanced analytics solutions are key growth drivers. Meanwhile, the Asia Pacific region is witnessing rapid growth due to the increasing urbanization, expanding retail sector, and government initiatives promoting smart city projects. Europe also presents substantial growth opportunities, supported by the strong presence of retail giants and technological advancements.
In addition to the indoor people counter market, the use of Fish Counting Systems is gaining traction, particularly in the environmental and aquaculture sectors. These systems are designed to accurately monitor fish populations in rivers, lakes, and fish farms, providing valuable data for conservation efforts and sustainable fishery management. By utilizing advanced technologies such as sonar and video imaging, fish counting systems can offer precise insights into fish behavior, migration patterns, and population dynamics. This data is crucial for ensuring the health of aquatic ecosystems and supporting the sustainable management of fish resources. As environmental concerns and the demand for sustainable practices grow, the adoption of fish counting systems is expected to increase, offering new opportunities for technological advancements and market expansion.
In the indoor people counter market, the component segment is divided into hardware, software, and services. Each of these components plays a crucial role in the overall functionality and effectiveness of people counting systems. Hardware components include sensors, cameras, and other physical devices used to detect and count individuals. This hardware is often integrated with sophisticated software that processes the data collected, providing valuable insights and analytics. Services encompass installation, maintenance, and technical support, ensuring the smooth operation of the systems.
The hardware segment is anticipated to hold the
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2021 World Population (updated daily)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/rsrishav/world-population on 28 January 2022.
--- Dataset description provided by original source is as follows ---
2021 World Population dataset which gets updated daily.
2021_population.csv
: File contains data for only live 2021 population count which gets updated daily.
Also contains more information about the country's growth rate, area, etc.
timeseries_population_count.csv
: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.
This type of data can be used for population-related use cases.
Like, my own dataset COVID Vaccination in World (updated daily)
, which requires population data.
I believe there are more use cases that I didn't explore yet but might other Kaggler needs this.
Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.
--- Original source retains full ownership of the source dataset ---
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global 3D people counter market size valued at approximately USD 800 million in 2023 is expected to reach USD 2.5 billion by 2032, registering a compound annual growth rate (CAGR) of 13.5% during the forecast period. The growth of this market is primarily driven by the increasing demand for advanced people counting solutions across various sectors, including retail, transportation, and healthcare, to enhance operational efficiency and customer experience.
One of the primary growth factors propelling the 3D people counter market is the rising need for retail analytics. Retailers are increasingly adopting advanced people counting technologies to gain insights into customer foot traffic, optimize store layouts, and improve overall sales performance. The integration of 3D people counters with other retail analytics tools enables retailers to gather comprehensive data, leading to more informed business decisions. Additionally, the shift towards omnichannel retailing and the need to bridge the gap between online and offline customer experiences further fuels the demand for 3D people counters.
Another significant growth driver is the increasing focus on public safety and security. Airports, train stations, stadiums, and other public places are deploying 3D people counters to manage crowd control and ensure the safety of individuals. These systems provide real-time data on crowd density and movement patterns, helping authorities to prevent overcrowding and enhance the overall safety of public spaces. Furthermore, the integration of 3D people counters with surveillance systems and emergency response protocols adds an additional layer of security, making these solutions indispensable for public safety applications.
The healthcare sector is also contributing to the growth of the 3D people counter market. Hospitals and healthcare facilities are adopting these systems to monitor patient flow, manage waiting times, and optimize resource allocation. The ability to track the movement of patients and staff within healthcare facilities not only improves operational efficiency but also enhances the quality of patient care. Moreover, the ongoing advancements in healthcare infrastructure and the increasing adoption of digital solutions in healthcare are expected to drive market growth further.
Visitor Counting Solutions have become increasingly vital in today's data-driven world, particularly in sectors such as retail, transportation, and public safety. These solutions offer businesses the ability to accurately track and analyze foot traffic, providing insights that can lead to improved customer experiences and operational efficiencies. By utilizing advanced technologies such as 3D people counters, organizations can gain a comprehensive understanding of visitor patterns and behaviors. This data is crucial for making informed decisions about resource allocation, marketing strategies, and overall business operations. As the demand for precise and reliable data continues to grow, the adoption of Visitor Counting Solutions is expected to rise, driving further advancements in the market.
Regionally, North America holds a significant share of the 3D people counter market, driven by the high adoption rate of advanced technologies and the presence of major market players in the region. The growing emphasis on retail analytics and public safety in the U.S. and Canada is boosting market demand. Additionally, Europe is witnessing substantial growth due to the increasing focus on smart city initiatives and advancements in retail and transportation sectors. The Asia Pacific region is also expected to experience rapid growth during the forecast period, fueled by the expanding retail sector, urbanization, and growing investments in public infrastructure.
The 3D people counter market is segmented into hardware, software, and services components. Each of these components plays a crucial role in the functionality and effectiveness of 3D people counting solutions. The hardware component includes sensors, cameras, and other physical devices that capture and process data on people movement. Technological advancements in sensor accuracy and camera resolution have significantly enhanced the reliability of hardware components, making them a vital part of modern 3D people counting systems. High-quality hardware ensures precise data collection, which is essential for accurate analytics and reporting.
<br /&gWorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global counters market size was valued at approximately USD 1.2 billion in 2023 and is projected to grow to USD 2.2 billion by 2032, exhibiting a CAGR of 6.5% during the forecast period. The growth of this market is primarily driven by the increasing demand for automation and advanced monitoring systems across various industries such as manufacturing, healthcare, and transportation.
The rising trend of industrial automation is one of the key growth factors for the counters market. Industries are increasingly adopting automated systems to enhance operational efficiency, which necessitates the use of counters for various applications, such as monitoring production lines and tracking output. Additionally, the integration of Internet of Things (IoT) technologies within industrial processes is further augmenting the demand for advanced electronic and electromechanical counters. The need for precision and accuracy in industrial operations is prompting industries to invest in advanced counter technologies.
The healthcare sector is another significant contributor to the growth of the counters market. The increasing prevalence of chronic diseases and the subsequent rise in the number of medical procedures are driving the demand for precise medical equipment that includes counters. Medical counters are essential for monitoring patient data, administering medications, and managing medical devices. Moreover, the advancements in medical technology, including the development of smart medical devices, are expected to further boost the demand for counters in the healthcare industry.
Furthermore, the growing demand for counters in commercial and residential applications is also playing a crucial role in market growth. In the commercial sector, counters are extensively used in retail stores for inventory management, customer counting, and transaction monitoring. Residential applications include the use of counters in smart home devices, energy meters, and water meters, contributing to the market growth. The increasing adoption of smart homes and IoT-enabled devices is expected to further propel the demand for counters in residential applications.
The implementation of People Counters in various sectors is revolutionizing how businesses and organizations manage foot traffic and occupancy levels. These devices are particularly beneficial in retail environments, where understanding customer flow can lead to optimized store layouts and improved sales strategies. In addition to retail, People Counters are increasingly being used in transportation hubs, museums, and public buildings to enhance safety and operational efficiency. By providing real-time data on the number of people in a given space, these counters help in maintaining social distancing norms and optimizing resource allocation. The integration of People Counters with IoT platforms further enhances their utility, allowing for seamless data collection and analysis, which is crucial for strategic decision-making.
Regionally, Asia Pacific dominates the counters market owing to the rapid industrialization and urbanization in the region. Countries such as China, India, and Japan are witnessing significant investments in industrial automation and smart city projects, which is driving the demand for counters. North America and Europe also hold substantial market shares due to the high adoption rate of advanced technologies and the presence of major market players. The Middle East & Africa and Latin America regions are anticipated to witness moderate growth, driven by the increasing focus on infrastructure development and industrialization.
The counters market is segmented into three primary types: Mechanical Counters, Electronic Counters, and Electromechanical Counters. Mechanical counters, although traditional, still hold relevance in various sectors due to their simplicity and durability. These counters are widely used in applications where electronic counters may not be suitable, such as in harsh environmental conditions. The demand for mechanical counters is driven by their low cost, ease of use, and minimal maintenance requirements. They are commonly used in industrial machinery, water meters, and gas meters.
Electronic counters are witnessing a significant surge in demand due to their advanced features and high precision. These counters are extensively used in applications requiring accurate measurements and real-time dat
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a hybrid gridded dataset of demographic data for China from 1979 to 2100, given as 21 five-year age groups of population divided by gender every year at a 0.5-degree grid resolution.
The historical period (1979-2020) part of this dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4, UN WPP-Adjusted Population Count) with gridded population from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, Histsoc gridded population data).
The projection (2010-2100) part of this dataset is resampled directly from Chen et al.’s data published in Scientific Data.
This dataset includes 31 provincial administrative districts of China, including 22 provinces, 5 autonomous regions, and 4 municipalities directly under the control of the central government (Taiwan, Hong Kong, and Macao were excluded due to missing data).
Method - demographic fractions by age and gender in 1979-2020
Age- and gender-specific demographic data by grid cell for each province in China are derived by combining historical demographic data in 1979-2020 with the national population census data provided by the National Statistics Bureau of China.
To combine the national population census data with the historical demographics, we constructed the provincial fractions of demographic in each age groups and each gender according to the fourth, fifth and sixth national population census, which cover the year of 1979-1990, 1991-2000 and 2001-2020, respectively. The provincial fractions can be computed as:
\(\begin{align*} \begin{split} f_{year,province,age,gender}= \left \{ \begin{array}{lr} POP_{1990,province,age,gender}^{4^{th}census}/POP_{1990,province}^{4^{th}census} & 1979\le\mathrm{year}\le1990\\ POP_{2000,province,age,gender}^{5^{th}census}/POP_{2000,province}^{5^{th}census} & 1991\le\mathrm{year}\le2000\\ POP_{2010,province,age,gender}^{6^{th}census}/POP_{2010,province}^{6^{th}census}, & 2001\le\mathrm{year}\le2020 \end{array} \right. \end{split} \end{align*}\)
Where:
- \( f_{\mathrm{year,province,age,gender}}\)is the fraction of population for a given age, a given gender in each province from the national census from 1979-2020.
- \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province,age,gender}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for a given age, a given gender in each province from the Xth national census.
- \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for all ages and both genders in each province from the Xth national census.
Method - demographic totals by age and gender in 1979-2020
The yearly grid population for 1979-1999 are from ISIMIP Histsoc gridded population data, and for 2000-2020 are from the GPWv4 demographic data adjusted by the UN WPP (UN WPP-Adjusted Population Count, v4.11, https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals-rev11), which combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP to improve accuracy. These two gridded time series are simply joined at the cut-over date to give a single dataset - historical demographic data covering 1979-2020.
Next, historical demographic data are mapped onto the grid scale to obtain provincial data by using gridded provincial code lookup data and name lookup table. The age- and gender-specific fraction were multiplied by the historical demographic data at the provincial level to obtain the total population by age and gender for per grid cell for china in 1979-2020.
Method - demographic totals and fractions by age and gender in 2010-2100
The grid population count data in 2010-2100 under different shared socioeconomic pathway (SSP) scenarios are drawn from Chen et al. published in Scientific Data with a resolution of 1km (~ 0.008333 degree). We resampled the data to 0.5 degree by aggregating the population count together to obtain the future population data per cell.
This previously published dataset also provided age- and gender-specific population of each provinces, so we calculated the fraction of each age and gender group at provincial level. Then, we multiply the fractions with grid population count to get the total population per age group per cell for each gender.
Note that the projected population data from Chen’s dataset covers 2010-2020, while the historical population in our dataset also covers 2010-2020. The two datasets of that same period may vary because the original population data come from different sources and are calculated based on different methods.
Disclaimer
This dataset is a hybrid of different datasets with independent methodologies. Spatial or temporal consistency across dataset boundaries cannot be guaranteed.
The Global Population Count Grid Time Series Estimates provide a back-cast time series of population grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population count grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.