Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density (people per sq. km of land area) in India was reported at 479 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Population density (people per sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>India population density for 2021 was <strong>475.65</strong>, a <strong>0.83% increase</strong> from 2020.</li>
<li>India population density for 2020 was <strong>471.76</strong>, a <strong>0.98% increase</strong> from 2019.</li>
<li>India population density for 2019 was <strong>467.19</strong>, a <strong>1.05% increase</strong> from 2018.</li>
</ul>Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.
In 2022, the population density in India remained nearly unchanged at around 479.43 inhabitants per square kilometer. Still, the population density reached its highest value in the observed period in 2022. Population density refers to the number of people living in a certain country or area, given as an average per square kilometer. It is calculated by dividing the total midyear population by the total land area.Find more key insights for the population density in countries like Sri Lanka and Pakistan.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India: Population density, people per square km: The latest value from 2021 is 473 people per square km, an increase from 470 people per square km in 2020. In comparison, the world average is 456 people per square km, based on data from 196 countries. Historically, the average for India from 1961 to 2021 is 305 people per square km. The minimum value, 153 people per square km, was reached in 1961 while the maximum of 473 people per square km was recorded in 2021.
In 2022, the union territory of Delhi had the highest urban population density of over 18 thousand persons per square kilometer. While the rural population density was highest in union territory of Puducherry, followed by the state of Bihar.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Population Density: Inhabitants per sq km data was reported at 476.650 Person in 2022. This records an increase from the previous number of 473.420 Person for 2021. India IN: Population Density: Inhabitants per sq km data is updated yearly, averaging 394.320 Person from Dec 1990 (Median) to 2022, with 33 observations. The data reached an all-time high of 476.650 Person in 2022 and a record low of 292.770 Person in 1990. India IN: Population Density: Inhabitants per sq km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s India – Table IN.OECD.GGI: Social: Demography: Non OECD Member: Annual.
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
In 2011, there were over 382 million individuals on average per square kilometer across the south east Asian country of India. Furthermore, there were over 3.6 thousand individuals per square kilometer in the urban regions and over 279 individuals per square kilometer in the rural regions of the country.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Population density of NCT of Delhi soared by 21.20% from 9,340 people per square kilometer in 2001 to 11,320 people per square kilometer in 2011. Since the 52.47% surge in 1961, population density rocketed by 531.34% in 2011. Notes: a. Includes estimated population of Paomata, Mao Maram and Purul sub-divisions of Senapati District of Manipur for 2001. b. For working out the density of India and Jammu & Kashmir the entire area and population of those portions of Jammu & Kashmir which are under illegal occupation of Pakistan and China have not been taken into account. c. India figures include estimated figures for those of the three sub-divisions viz. Mao Maram, Paomata and Purul of Senapati district of Manipur as population census 2001 in these three subdivisions were cancelled due to technical and administrative reasons although a population census was carried out in this sub-division as per schedule.
The population density of the northern state of Uttar Pradesh in India recorded 829 people for every square kilometer in 2011, the latest available census. This was a doubling compared to the value in 1981.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains the density of roads in India. The density is measured on two parameters in this data set. No.of Km of Road per 1000 sq. km and No.of KM of road per 1000 population. The dataset is categorised into density across India, density of Urban Roads and density of Rural roads. The information is as on 31st March of the respective years
According to the 2011 census, the population density in the Indian state of Maharashtra was 365 individuals per square kilometer. Located on the Deccan Plateau, it is the second-most populous state in the country. A steady increase in the population of the state can be attributed to growing urban districts such as Mumbai and Pune, with diverse employment opportunities in several sectors.
India's economic powerhouse
With a contribution of over 22 trillion Indian rupees in the financial year 2017, the state of Maharashtra had the highest gross state domestic product in the country. A per capita income of over 175 thousand Indian rupees was estimated across the state for the preceding year. Based on its economic model, the state was a highly preferred destination for domestic and foreign investments.
The most populous Indian state
Mumbai, the capital city of Maharashtra, was the most populous city after Delhi. As the country's economic core, it serves as the financial and commercial capital while providing numerous job opportunities. Many are attracted to this dream city in search of a lucrative career and to make it big in the world-famous Bollywood film industry.
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/
2.547 (People per square kilometer) in 2011. Notes: a. Includes estimated population of Paomata, Mao Maram and Purul sub-divisions of Senapati District of Manipur for 2001. b. For working out the density of India and Jammu & Kashmir the entire area and population of those portions of Jammu & Kashmir which are under illegal occupation of Pakistan and China have not been taken into account. c. India figures include estimated figures for those of the three sub-divisions viz. Mao Maram, Paomata and Purul of Senapati district of Manipur as population census 2001 in these three subdivisions were cancelled due to technical and administrative reasons although a population census was carried out in this sub-division as per schedule.
11.320 (People per square kilometer) in 2011. Notes: a. Includes estimated population of Paomata, Mao Maram and Purul sub-divisions of Senapati District of Manipur for 2001. b. For working out the density of India and Jammu & Kashmir the entire area and population of those portions of Jammu & Kashmir which are under illegal occupation of Pakistan and China have not been taken into account. c. India figures include estimated figures for those of the three sub-divisions viz. Mao Maram, Paomata and Purul of Senapati district of Manipur as population census 2001 in these three subdivisions were cancelled due to technical and administrative reasons although a population census was carried out in this sub-division as per schedule.
2.191 (People per square kilometer) in 2011. Notes: a. Includes estimated population of Paomata, Mao Maram and Purul sub-divisions of Senapati District of Manipur for 2001. b. For working out the density of India and Jammu & Kashmir the entire area and population of those portions of Jammu & Kashmir which are under illegal occupation of Pakistan and China have not been taken into account. c. India figures include estimated figures for those of the three sub-divisions viz. Mao Maram, Paomata and Purul of Senapati district of Manipur as population census 2001 in these three subdivisions were cancelled due to technical and administrative reasons although a population census was carried out in this sub-division as per schedule.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.
The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.
This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.
Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.
This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.
This dataset (world_population_data.csv
) covering from 1970 up to 2023 includes the following columns:
Column Name | Description |
---|---|
Rank | Rank by Population |
CCA3 | 3 Digit Country/Territories Code |
Country | Name of the Country |
Continent | Name of the Continent |
2023 Population | Population of the Country in the year 2023 |
2022 Population | Population of the Country in the year 2022 |
2020 Population | Population of the Country in the year 2020 |
2015 Population | Population of the Country in the year 2015 |
2010 Population | Population of the Country in the year 2010 |
2000 Population | Population of the Country in the year 2000 |
1990 Population | Population of the Country in the year 1990 |
1980 Population | Population of the Country in the year 1980 |
1970 Population | Population of the Country in the year 1970 |
Area (km²) | Area size of the Country/Territories in square kilometer |
Density (km²) | Population Density per square kilometer |
Growth Rate | Population Growth Rate by Country |
World Population Percentage | The population percentage by each Country |
The primary dataset was retrieved from the World Population Review. I sincerely thank the team for providing the core data used in this dataset.
© Image credit: Freepik
9.258 (People per square kilometer) in 2011. Notes: a. Includes estimated population of Paomata, Mao Maram and Purul sub-divisions of Senapati District of Manipur for 2001. b. For working out the density of India and Jammu & Kashmir the entire area and population of those portions of Jammu & Kashmir which are under illegal occupation of Pakistan and China have not been taken into account. c. India figures include estimated figures for those of the three sub-divisions viz. Mao Maram, Paomata and Purul of Senapati district of Manipur as population census 2001 in these three subdivisions were cancelled due to technical and administrative reasons although a population census was carried out in this sub-division as per schedule.
308 (People per square kilometer) in 2011. Notes: a. Includes estimated population of Paomata, Mao Maram and Purul sub-divisions of Senapati District of Manipur for 2001. b. For working out the density of India and Jammu & Kashmir the entire area and population of those portions of Jammu & Kashmir which are under illegal occupation of Pakistan and China have not been taken into account. c. India figures include estimated figures for those of the three sub-divisions viz. Mao Maram, Paomata and Purul of Senapati district of Manipur as population census 2001 in these three subdivisions were cancelled due to technical and administrative reasons although a population census was carried out in this sub-division as per schedule.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density (people per sq. km of land area) in India was reported at 479 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Population density (people per sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.