Facebook
TwitterAs of November 2019, around 63 percent of people aged 16 years and older worldwide believed that tobacco use increases a person's risk of getting cancer. This statistic illustrates the percentage of people worldwide who thought the following increase a person's risk of getting cancer as of 2019.
Facebook
TwitterCancer survival statistics are typically expressed as the proportion of patients alive at some point subsequent to the diagnosis of their cancer. Statistics compare the survival of patients diagnosed with cancer with the survival of people in the general population who are the same age, race, and sex and who have not been diagnosed with cancer.
Facebook
TwitterCancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cervical Cancer Risk Factors for Biopsy: This Dataset is Obtained from UCI Repository and kindly acknowledged! This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination! About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. In the United States, cervical cancer mortality rates plunged by 74% from 1955 - 1992 thanks to increased screening and early detection with the Pap test. AGE Fifty percent of cervical cancer diagnoses occur in women ages 35 - 54, and about 20% occur in women over 65 years of age. The median age of diagnosis is 48 years. About 15% of women develop cervical cancer between the ages of 20 - 30. Cervical cancer is extremely rare in women younger than age 20. However, many young women become infected with multiple types of human papilloma virus, which then can increase their risk of getting cervical cancer in the future. Young women with early abnormal changes who do not have regular examinations are at high risk for localized cancer by the time they are age 40, and for invasive cancer by age 50. SOCIOECONOMIC AND ETHNIC FACTORS Although the rate of cervical cancer has declined among both Caucasian and African-American women over the past decades, it remains much more prevalent in African-Americans -- whose death rates are twice as high as Caucasian women. Hispanic American women have more than twice the risk of invasive cervical cancer as Caucasian women, also due to a lower rate of screening. These differences, however, are almost certainly due to social and economic differences. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. HIGH SEXUAL ACTIVITY Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis).Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. FAMILY HISTORY Women have a higher risk of cervical cancer if they have a first-degree relative (mother, sister) who has had cervical cancer. USE OF ORAL CONTRACEPTIVES Studies have reported a strong association between cervical cancer and long-term use of oral contraception (OC). Women who take birth control pills for more than 5 - 10 years appear to have a much higher risk HPV infection (up to four times higher) than those who do not use OCs. (Women taking OCs for fewer than 5 years do not have a significantly higher risk.) The reasons for this risk from OC use are not entirely clear. Women who use OCs may be less likely to use a diaphragm, condoms, or other methods that offer some protection against sexual transmitted diseases, including HPV. Some research also suggests that the hormones in OCs might help the virus enter the genetic material of cervical cells. HAVING MANY CHILDREN Studies indicate that having many children increases the risk for developing cervical cancer, particularly in women infected with HPV. SMOKING Smoking is associated with a higher risk for precancerous changes (dysplasia) in the cervix and for progression to invasive cervical cancer, especially for women infected with HPV. IMMUNOSUPPRESSION Women with weak immune systems, (such as those with HIV / AIDS), are more susceptible to acquiring HPV. Immunocompromised patients are also at higher risk for having cervical precancer develop rapidly into invasive cancer. DIETHYLSTILBESTROL (DES) From 1938 - 1971, diethylstilbestrol (DES), an estrogen-related drug, was widely prescribed to pregnant women to help prevent miscarriages. The daughters of these women face a higher risk for cervical cancer. DES is no longer prsecribed.
Facebook
TwitterThis publication sets out and comments on stage at cancer diagnosis in Clinical Commissioning Groups in England for patients diagnosed in the period 2013 to 2018. Proportion of cancers diagnosed at an early stage are presented unadjusted and adjusted for case-mix (age, sex, cancer site and socio-economic deprivation). Supporting data quality and stage completeness are presented for persons diagnosed 2001 to 2018.
The 21 cancer groups are defined as those with 1,500 cancers diagnosed annually in England and 70% staging completeness.
The statistics are obtained from the National Cancer Registration Dataset that is collected, quality assured and analysed by the National Cancer Registration and Analysis Service, part of Public Health England.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Some racial and ethnic categories are suppressed for privacy and to avoid misleading estimates when the relative standard error exceeds 30% or the unweighted sample size is less than 50 respondents. Margins of error are estimated at the 90% confidence level.
Data Source: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey (BRFSS) Data
Why This Matters
Colorectal cancer is the third leading cause of cancer death in the U.S. for men and women. Although colorectal cancer is most common among people aged 65 to 74, there has been an increase in incidences among people aged 40 to 49.
Nationally, Black people are disproportionately likely to both have colorectal cancer and die from it. Hispanic residents, and especially those with limited English proficiency, report having the lowest rate of colorectal cancer screenings.
Racial disparities in education, poverty, health insurance coverage, and English language proficiency are all factors that contribute to racial gaps in receiving colorectal cancer screenings. Increased colorectal cancer screening utilization has been shown to nearly erase the racial disparities in the death rate of colorectal cancer.
The District Response
The Colorectal Cancer Control Program (DC3C) aims to reduce colon cancer incidence and mortality by increasing colorectal cancer screening rates among District residents.
DC Health’s Cancer and Chronic Disease Prevention Bureau works with healthcare providers to improve the use of preventative health services and provide colorectal cancer screening services.
DC Health maintains the District of Columbia Cancer Registry (DCCR) to track cancer incidences, examine environmental substances that cause cancer, and identify differences in cancer incidences by age, gender, race, and geographical location.
Facebook
TwitterThe rate of liver cancer diagnoses in the United States increases with age. As of 2022, those aged 80 to 84 years had the highest rates of liver cancer. Risk factors for liver cancer include smoking, drinking alcohol, being overweight or obese, and having diabetes. Who is most likely to get liver cancer? Liver cancer in the United States is much more common among men than women. In 2022, there were 12 new liver cancer diagnoses among men per 100,000 population, compared to just five new diagnoses per 100,000 women. Concerning race and ethnicity, non-Hispanic American Indians and Alaska Natives and Hispanics have the highest rates of new liver cancer diagnoses. The five-year survival rate for liver cancer in the United States is around 22 percent; however, this rate is much higher among non-Hispanic Asian and Pacific Islanders than other races and ethnicities. Non-Hispanic Asian and Pacific Islanders have a 33 percent chance of surviving the next five years after a liver cancer diagnosis. Deaths from liver cancer In 2023, there were an estimated 29,911 deaths in the United States due to liver cancer. However, the death rate for liver cancer has remained stable over the past few years. In 2023, the death rate for liver cancer was 6.6 deaths per 100,000 population. It is estimated that in 2025, there will be over 19,000 liver and intrahepatic bile duct cancer deaths among men in the United States and 10,800 such deaths among women.
Facebook
TwitterSUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset contains 2 .csv files
This file contains various demographic and health-related data for different regions. Here's a brief description of each column:
File 1st
avganncount: Average number of cancer cases diagnosed annually.
avgdeathsperyear: Average number of deaths due to cancer per year.
target_deathrate: Target death rate due to cancer.
incidencerate: Incidence rate of cancer.
medincome: Median income in the region.
popest2015: Estimated population in 2015.
povertypercent: Percentage of population below the poverty line.
studypercap: Per capita number of cancer-related clinical trials conducted.
binnedinc: Binned median income.
medianage: Median age in the region.
pctprivatecoveragealone: Percentage of population covered by private health insurance alone.
pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.
pctpubliccoverage: Percentage of population covered by public health insurance.
pctpubliccoveragealone: Percentage of population covered by public health insurance only.
pctwhite: Percentage of White population.
pctblack: Percentage of Black population.
pctasian: Percentage of Asian population.
pctotherrace: Percentage of population belonging to other races.
pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.
File 2nd
This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:
statefips: The FIPS code representing the state.
countyfips: The FIPS code representing the county or census area within the state.
avghouseholdsize: The average household size in the region.
geography: The geographical location, typically represented as the county or census area name followed by the state name.
Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Proportion of patients examined within a standardized course of care out of the total number of people who are expected to receive a cancer diagnosis during the year. The calculation is based on data from the National Board of Health and Welfare. Standardized course of care (SVF) is a national approach that aims to reduce unnecessary waiting and uncertainty for the patient. All SVFs start with a well-founded suspicion of cancer. What is a well-founded suspicion, how it should be investigated and how long this may take, is stated in the national care program for each cancer diagnosis. The time from well-founded suspicion to the start of treatment is measured in the same way throughout the country. An SVF describes the investigations to be carried out in the event of suspicion of a particular cancer disease, as well as the maximum time limits within which the investigations must be completed and the first treatment must be started. The denominator consists of the total number of people who are expected to receive a cancer diagnosis during the year. The calculation is based on the number of cancer cases in the last three years with data from the Cancer Registry at the National Board of Health and Welfare.
Facebook
TwitterAnnual percent change and average annual percent change in age-standardized cancer incidence rates since 1984 to the most recent diagnosis year. The table includes a selection of commonly diagnosed invasive cancers, as well as in situ bladder cancer. Cases are defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3) from 1992 to the most recent data year and on the International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1991.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Some racial and ethnic categories are suppressed for privacy and to avoid misleading estimates when the relative standard error exceeds 30% or the unweighted sample size is less than 50 respondents.
Data Source: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey (BRFSS) Data
Why This Matters
Breast cancer is the most commonly diagnosed cancer in women and people assigned female at birth (AFAB) and the second leading cause of cancer death in the U.S. Breast cancer screenings can save lives by helping to detect breast cancer in its early stages when treatment is more effective.
While non-Hispanic white women and AFAB individuals are more likely to be diagnosed with breast cancer than their counterparts of other races and ethnicities, non-Hispanic Black women and AFAB individuals die from breast cancer at a significantly higher rate than their counterparts races and ethnicities.
Later-stage diagnoses and prolonged treatment duration partly explain these disparities in mortality rate. Structural barriers to quality health care, insurance, education, affordable housing, and sustainable income that disproportionately affect communities of color also drive racial inequities in breast cancer screenings and mortality.
The District Response
Project Women Into Staying Healthy (WISH) provides free breast and cervical cancer screenings to uninsured or underinsured women and AFAB adults aged 21 to 64. Patient navigation, transportation assistance, and cancer education are also provided.
DC Health’s Cancer and Chronic Disease Prevention Bureau works with healthcare providers to improve the use of preventative health services and provide breast cancer screening services.
DC Health maintains the District of Columbia Cancer Registry (DCCR) to track cancer incidences, examine environmental substances that cause cancer, and identify differences in cancer incidences by age, gender, race, and geographical location.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
June 2020: There has been a change to the construction of this indicator. Please see the 'Notes and definitions' tab and the Specification for further information. This revised indicator is being published as an experimental statistic. Experimental statistics are official statistics which are published in order to involve users and stakeholders in their development and as a means to build in quality at an early stage. The percentage of new cases of cancer which were diagnosed at stage 1 or 2 for the specific cancer sites, morphologies and behaviour: Oesophagus; Stomach; Colon; Rectum; Pancreas; Lung; Melanoma of skin; Breast; Cervix; Uterus; Ovary; Prostate; Testis; Kidney; Bladder; Hodgkin lymphoma; Thyroid; Larynx; Oropharynx; Oral cavity; Non-Hodgkin lymphoma. This indicator relates to a subset of the cancers covered by CCG indicator 1.17 Record of stage of cancer at diagnosis. Legacy unique identifier: P01817
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionTo reduce mortality, the Taiwan government has vigorously promoted free cancer screening and preventive health screening services. Cancers are usually advanced by the time they are discovered in the emergency department. Through this study, we aimed to understand the characteristics of cancer patients diagnosed through the emergency department and thus identify high-risk populations by comparing cancer staging and survival rates in patients diagnosed in the emergency department and those diagnosed in the non-emergency department.MethodsThe retrospective study enrolled a total of 389,043 patients over the age of 20 who were newly diagnosed with one of the five major cancers (including lung cancer, colorectal cancer, breast cancer, prostate cancer, and oral cancer) between 2008 and 2017 and analyzed their diagnostic pathway, cancer stage at diagnosis, and survival time.ResultsOf the study participants, 59,423 patients (about 15.3%) were diagnosed with cancer through the emergency department. We found that a sizable proportion of older people and patients with low education and low incomes were diagnosed through emergency department visits, and those with a health condition comorbidity severity of 3 had the highest proportion diagnosed by the emergency department, advanced stages at diagnosis, and risk of death. These can be classified as high-risk groups. In addition, 76.4% of patients diagnosed in the emergency department had advanced cancer, and the risk of death was 1.46 times higher than that of patients diagnosed in the non-emergency department. Although cancer screening is available, it does not reduce the proportion of patients with advanced cancer who are diagnosed through or at the time of diagnosis in the emergency department.ConclusionsThe present study found that the government’s cancer screening did not affect the proportion or number of cancers diagnosed through emergency department visits. Therefore, the government should focus on more cancer screening, health education in high-risk groups, and strengthening the link between emergency and oncology departments to reduce the risk of death for patients diagnosed through emergency department visits.
Facebook
TwitterBackground: Knowledge on missing data in a clinical cancer register is important to assess the validity of research results. For analysis of prostate cancer (Pca), risk category, a composite variable based on serum levels of prostate specific antigen (PSA), stage, and Gleason score, is crucial for treatment decisions and a strong determinant of outcome. The aim of this study was to assess the proportion and characteristics of men in the National Prostate Cancer Register (NPCR) of Sweden with unknown risk category. Material and methods: Men diagnosed with Pca between 1998 and 2012 registered in NPCR with known or unknown risk category were compared with respect to age, socioeconomic factors, comorbidity, cancer characteristics, cancer treatment, and mortality from Pca and other causes. Results: In total, 3315 of 129 391 (3%) men had unknown risk category. Compared to other men in NPCR, these men more often had a concomitant bladder cancer diagnosis, 19% versus 1%, diagnosis of benign prostatic hyperplasia 31% versus 5%, received unspecified Pca treatment 16% versus 3%, had higher comorbidity, Charlson Comorbidity Index 2 or higher, 34% versus 13%, and had lower Pca mortality 12% versus 30%, but similar mortality from other causes. Conclusion: Men with unknown risk category were rare in NPCR but distinctly different from other men in NPCR in many aspects including higher comorbidity and lower Pca mortality.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Cancer Incidence data for Breast Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are for females segmented by age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.
Facebook
TwitterIn 2019-2020, around 11.3 percent of those who had served in the U.S. military reported being diagnosed with some form of cancer. This statistic shows the percentage of those who have served/not served in the U.S. military who reported being told by a health professional that they had some form of cancer in 2019-2020.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Cancer Incidence data for Lung Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are segmented by sex (Both Sexes, Male, and Female) and age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.
Facebook
TwitterBackgroundIdentifying individuals at a higher risk of developing cancer is a major concern for healthcare providers. Cancer predisposition syndromes are the underlying cause of cancer aggregation and young-onset tumors in many families. Germline genetic testing is underused due to lack of access, but Brazilian germline data associated with cancer predisposition syndromes are needed.MethodsMedical records of patients referred for genetic counseling at the Oncogenetics Department at the Hospital Sírio-Libanês (Brasília, DF, Brazil) from July 2017 to January 2021 were reviewed. The clinical features and germline findings were described. Detection rates of germline pathogenic/likely pathogenic variant (P/LPV) carriers were compared between international and Brazilian guidelines for genetic testing.ResultsA total of 1,091 individuals from 985 families were included in this study. Most patients (93.5%) had a family history of cancer, including 64% with a family member under 50 with cancer. Sixty-six percent of patients (720/1091) had a personal history of cancer. Young-onset cancers (<50 years old) represented 62% of the patients affected by cancer and 17% had multiple primary cancers. The cohort included patients with 30 different cancer types. Breast cancer was the most prevalent type of cancer (52.6%). Germline testing included multigene panel (89.3%) and family variant testing (8.9%). Approximately 27% (236/879) of the tested patients harbored germline P/LPVs in cancer susceptibility genes. BRCA2, BRCA1, and TP53 were the most frequently reported genes, corresponding to 18.6%, 14.4%, and 13.5% of the positive results, respectively. Genetic testing criteria from international guidelines were more effective in identifying carriers than the Brazilian National Agency of Supplementary Health (ANS) criteria (92% vs. 72%, p<0.001). Forty-six percent of the cancer-unaffected patients who harbored a germline P/LPV (45/98) would not be eligible for genetic testing according to ANS because they did not have a family variant previously identified in a cancer-affected relative.ConclusionThe high detection rate of P/LPVs in the present study is possibly related to the genetic testing approach with multigene panels and cohort’s characteristics, represented mainly by individuals with a personal or family history of young-onset cancer. Testing asymptomatic individuals with suspicious family history may also have contributed to a higher detection rate. A significant number of carriers would not have been identified using ANS criteria for genetic testing.
Facebook
TwitterAs of November 2019, around 63 percent of people aged 16 years and older worldwide believed that tobacco use increases a person's risk of getting cancer. This statistic illustrates the percentage of people worldwide who thought the following increase a person's risk of getting cancer as of 2019.