62 datasets found
  1. Percentage of people in the U.S. without health insurance 1997-2024

    • statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Percentage of people in the U.S. without health insurance 1997-2024 [Dataset]. https://www.statista.com/statistics/200957/percentage-of-americans-without-health-insurance/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, *** percent of all people in the United States didn't have health insurance. The share of Americans without health insurance saw a steady increase from 2015 to 2019 before starting to decline from 2020 to 2023. Factors like the implementation of Medicaid expansion in additional states and growth in private health insurance coverage led to the decline in the uninsured population, despite the economic challenges due to the pandemic in 2020. More coverage after Obamacare The groups who saw the biggest improvement in health insurance coverage after the ACA was enacted were Hispanic and Black Americans. Meanwhile, the share of White Americans without health insurance also fell due to Obamacare, but the drop in that group wasn’t as dramatic as in other ethnic groups. This is primarily due to the fact that the uninsured rate among White Americans was much lower pre-ACA than among any other group, so there was less room for improvement. ACA was especially significant for those with low income Although the ACA was signed into law in 2010, many of its major provisions didn’t come into force until 2014, which accounts for the sharp drop in Americans without health insurance in 2014. Adults with a family income lower than 200% of Federal Poverty Level (FPL) were especially impacted by the law, as the share of uninsured adults in this income group dropped ** percent between 2013 and 2015.

  2. Share of total U.S. population without health insurance in 2022, by state

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Share of total U.S. population without health insurance in 2022, by state [Dataset]. https://www.statista.com/statistics/986620/health-uninsured-population-share-by-us-state/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, around****** percent of the total population of the United States was uninsured. Texas was the state with the highest percentage of uninsured among its population, while Massachusetts reported the lowest share of uninsured This statistic presents the percentage of the total population in the United States without health insurance in 2022, by state.

  3. p

    Uninsured Population Census Data CY 2009-2014 Human Services

    • data.pa.gov
    csv, xlsx, xml
    Updated Jul 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Small Area Health Insurance Estimates Program, U.S. Census Bureau (2018). Uninsured Population Census Data CY 2009-2014 Human Services [Dataset]. https://data.pa.gov/w/s782-mpqp/33ch-zxdi?cur=NpQjDR1nV-g&from=root
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Jul 25, 2018
    Dataset authored and provided by
    Small Area Health Insurance Estimates Program, U.S. Census Bureau
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This data is pulled from the U.S. Census website. This data is for years Calendar Years 2009-2014. Product: SAHIE File Layout Overview Small Area Health Insurance Estimates Program - SAHIE Filenames: SAHIE Text and SAHIE CSV files 2009 – 2014 Source: Small Area Health Insurance Estimates Program, U.S. Census Bureau. Internet Release Date: May 2016 Description: Model‐based Small Area Health Insurance Estimates (SAHIE) for Counties and States File Layout and Definitions

    The Small Area Health Insurance Estimates (SAHIE) program was created to develop model-based estimates of health insurance coverage for counties and states. This program builds on the work of the Small Area Income and Poverty Estimates (SAIPE) program. SAHIE is only source of single-year health insurance coverage estimates for all U.S. counties.

    For 2008-2014, SAHIE publishes STATE and COUNTY estimates of population with and without health insurance coverage, along with measures of uncertainty, for the full cross-classification of: •5 age categories: 0-64, 18-64, 21-64, 40-64, and 50-64

    •3 sex categories: both sexes, male, and female

    •6 income categories: all incomes, as well as income-to-poverty ratio (IPR) categories 0-138%, 0-200%, 0-250%, 0-400%, and 138-400% of the poverty threshold

    •4 races/ethnicities (for states only): all races/ethnicities, White not Hispanic, Black not Hispanic, and Hispanic (any race).

    In addition, estimates for age category 0-18 by the income categories listed above are published.

    Each year’s estimates are adjusted so that, before rounding, the county estimates sum to their respective state totals and for key demographics the state estimates sum to the national ACS numbers insured and uninsured.

    This program is partially funded by the Centers for Disease Control and Prevention's (CDC), National Breast and Cervical Cancer Early Detection ProgramLink to a non-federal Web site (NBCCEDP). The CDC have a congressional mandate to provide screening services for breast and cervical cancer to low-income, uninsured, and underserved women through the NBCCEDP. Most state NBCCEDP programs define low-income as 200 or 250 percent of the poverty threshold. Also included are IPR categories relevant to the Affordable Care Act (ACA). In 2014, the ACA will help families gain access to health care by allowing Medicaid to cover families with incomes less than or equal to 138 percent of the poverty line. Families with incomes above the level needed to qualify for Medicaid, but less than or equal to 400 percent of the poverty line can receive tax credits that will help them pay for health coverage in the new health insurance exchanges.

    We welcome your feedback as we continue to research and improve our estimation methods. The SAHIE program's age model methodology and estimates have undergone internal U.S. Census Bureau review as well as external review. See the SAHIE Methodological Review page for more details and a summary of the comments and our response.

    The SAHIE program models health insurance coverage by combining survey data from several sources, including: •The American Community Survey (ACS) •Demographic population estimates •Aggregated federal tax returns •Participation records for the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp program •County Business Patterns •Medicaid •Children's Health Insurance Program (CHIP) participation records •Census 2010

    Margin of error (MOE). Some ACS products provide an MOE instead of confidence intervals. An MOE is the difference between an estimate and its upper or lower confidence bounds. Confidence bounds can be created by adding the margin of error to the estimate (for the upper bound) and subtracting the margin of error from the estimate (for the lower bound). All published ACS margins of error are based on a 90-percent confidence level.

  4. Percentage of U.S. population without health insurance coverage 1984-2019,...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Percentage of U.S. population without health insurance coverage 1984-2019, by gender [Dataset]. https://www.statista.com/statistics/188166/percentage-of-us-population-without-health-insurance-coverage-by-gender/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the percentage of the U.S. population under 65 years of age without health insurance coverage from 1984 to 2019, by gender. In 2019, around 13 percent of the male U.S. population under 65 years were without health insurance coverage.

  5. Percentage of people in the U.S. without health insurance by ethnicity...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Percentage of people in the U.S. without health insurance by ethnicity 2010-2024 [Dataset]. https://www.statista.com/statistics/200970/percentage-of-americans-without-health-insurance-by-race-ethnicity/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, approximately ******** percent of the Hispanic population in the United States did not have health insurance, a historical low since 2010. In 2024, the national average was *** percent. White Americans had a below-average rate of just ***** percent, whereas *** percent of Black Americans had no health insurance.Impact of the Affordable Care ActThe Affordable Care Act (ACA), also known as Obamacare, was enacted in March 2010, which expanded the Medicaid program, made affordable health insurance available to more people and aimed to lower health care costs by supporting innovative medical care delivery methods. Though it was enacted in 2010, the full effects of it weren’t seen until 2013, when government-run insurance marketplaces such as HealthCare.gov were opened. The number of Americans without health insurance fell significantly between 2010 and 2015, but began to rise again after 2016. What caused the change?The Tax Cuts and Jobs Act of 2017 has played a role in decreasing the number of Americans with health insurance, because the individual mandate was repealed. The aim of the individual mandate (part of the ACA) was to ensure that all Americans had health coverage and thus spread the costs over the young, old, sick and healthy by imposing a large tax fine on those without coverage.

  6. US Uninsured Statistics

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). US Uninsured Statistics [Dataset]. https://www.johnsnowlabs.com/marketplace/us-uninsured-statistics/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    1984 - 2016
    Area covered
    United States
    Description

    This dataset shows the statistics of United States uninsured persons with no health coverage under age 65 by selected characteristics. Data are based on household interviews of a sample of the civilian noninstitutionalized population.

  7. t

    Black Population without Health Insurance

    • prod.testopendata.com
    Updated Dec 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2022). Black Population without Health Insurance [Dataset]. https://prod.testopendata.com/maps/SeattleCityGIS::black-population-without-health-insurance-1
    Explore at:
    Dataset updated
    Dec 6, 2022
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Description

    This layer shows health insurance coverage sex and race by age group and is symbolized to show shows the percentage of the Black or African American population without health insurance. This is shown by 2020 census tract centroids. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer uses the 2020 American Community Survey (ACS) 5-year data and contains estimates and margins of error. There are additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. For more information regarding the ACS vintage, table sources and data processing notes, please see the item page for the source map service.

  8. ACS Health Insurance by Age by Race Variables - Boundaries

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Nov 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Health Insurance by Age by Race Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/0bdb1479d3554ae59337a0eb47b17afb
    Explore at:
    Dataset updated
    Nov 17, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  9. Percentage of population without health insurance coverage in the U.S....

    • statista.com
    Updated May 9, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2010). Percentage of population without health insurance coverage in the U.S. 1984-2019 [Dataset]. https://www.statista.com/statistics/188158/percentage-of-us-population-under-65-without-health-insurance-since-1984/
    Explore at:
    Dataset updated
    May 9, 2010
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the percentage of the U.S. population under 65 years of age without health insurance coverage from 1984 to 2019. In 2019, ** percent of the U.S. population under 65 years were without health insurance coverage.

  10. Where are minority populations with no health insurance?

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Where are minority populations with no health insurance? [Dataset]. https://hub.arcgis.com/maps/df5cb40cc03d4f02840decc686ed933a
    Explore at:
    Dataset updated
    Jan 6, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows what percent of the minority population does not have health insurance. Color shows the percent without health insurance compared to total population as size. Areas in yellow are above the national average of 8% of total persons without health insurance.Data is from the American Community Survey (ACS) 5 year estimates available in state, county, and tract geographies. For added context, 2010-2014 ACS layers have been added to show how health insurance coverage for the minority population has changed over time. The symbology is the same for equal comparison. Turn layers on/off and click the popup for more information. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

  11. Percentage of U.S. population without health insurance coverage by ethnicity...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Percentage of U.S. population without health insurance coverage by ethnicity 2019 [Dataset]. https://www.statista.com/statistics/188187/percentage-of-us-population-without-health-insurance-coverage-by-ethnicity/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the percentage of the U.S. population under 65 years of age without health insurance coverage in 2010 and 2019, by ethnicity. In 2019, approximately ** percent of the white population under 65 years of age were without health insurance coverage.

  12. County

    • hub.arcgis.com
    Updated Nov 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). County [Dataset]. https://hub.arcgis.com/datasets/esri::county-82?uiVersion=content-views
    Explore at:
    Dataset updated
    Nov 17, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  13. 2024 American Community Survey: S2702 | Selected Characteristics of the...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: S2702 | Selected Characteristics of the Uninsured in the United States (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2024.S2702?t=Health+Insurance&g=
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    United States
    Description

    Key Table Information.Table Title.Selected Characteristics of the Uninsured in the United States.Table ID.ACSST1Y2024.S2702.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cit...

  14. Uninsured rate of U.S. non-elderly population by age 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Uninsured rate of U.S. non-elderly population by age 2024 [Dataset]. https://www.statista.com/statistics/498532/rate-of-us-non-elderly-without-health-insurance-by-age/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, 12.9 percent of those aged between 26 and 34 were uninsured in the U.S., this was higher in comparison to 6.1 percent of those below 19 years of age. This statistic shows the uninsured rate for non-elderly people in the U.S. from 2024, by age group.

  15. 2014 American Community Survey: S2702 | SELECTED CHARACTERISTICS OF THE...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2014 American Community Survey: S2702 | SELECTED CHARACTERISTICS OF THE UNINSURED IN THE UNITED STATES (ACS 5-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST5Y2014.S2702?q=Linden+city,+New+Jersey+Health
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2014
    Area covered
    United States
    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2010-2014 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..The health insurance coverage category names were modified in 2010. See ACS Health Insurance Definitions for a list of the insurance type definitions..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see http://www.census.gov/hhes/www/hlthins/publications/coverage_edits_final.pdf for more details. The corresponding 2008 data table in American FactFinder does not incorporate these edits and is therefore not comparable to this table in 2009, 2010, 2011, or 2012. Select geographies of 2008 data comparable to the 2009, 2010, 2011, and 2012 tables are accessible at http://www.census.gov/hhes/www/hlthins/data/acs/2008/re-run.html..Occupation codes are 4-digit codes and are based on Standard Occupational Classification 2010..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2010-2014 American Community Survey 5-Year Estimates

  16. A

    Tract

    • data.amerigeoss.org
    csv, esri rest +4
    Updated Mar 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). Tract [Dataset]. https://data.amerigeoss.org/fi/dataset/tract3
    Explore at:
    kml, csv, esri rest, html, geojson, zipAvailable download formats
    Dataset updated
    Mar 13, 2020
    Dataset provided by
    ESRI
    Description

    This layer shows demographic context for senior well-being work. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.


    The layer is symbolized to show the percentage of population aged 65 and up (senior population). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right.

    Current Vintage: 2014-2018
    ACS Table(s): B01001, B09021, B17020, B18101, B23027, B25072, B25093, B27010, B28005
    Date of API call: March 9, 2020
    National Figures: data.census.gov

    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.
    • Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).
    • Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.
    • Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.
    • Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:
      • The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
      • Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
      • The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.
      • The estimate is controlled. A statistical test for sampling variability is not appropriate.
      • The data for this geographic area cannot be displayed because the number of sample cases is too small.
      • NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

  17. Percentage of U.S. population without health insurance 1994-2019 by location...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Percentage of U.S. population without health insurance 1994-2019 by location [Dataset]. https://www.statista.com/statistics/188172/percentage-of-us-population-without-health-insurance-coverage-by-location/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the percentage of the U.S. population under 65 years of age without health insurance coverage from 1984 to 2019, by location of residence. In 2019, over 11 percent of the U.S. population within metropolitan statistical areas under 65 years of age were without health insurance coverage.

  18. Supplementary file 1_Disparities in public transit access to healthcare in...

    • frontiersin.figshare.com
    docx
    Updated Nov 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mei Yang; Tiankai Wang (2025). Supplementary file 1_Disparities in public transit access to healthcare in Austin, Texas.docx [Dataset]. http://doi.org/10.3389/fpubh.2025.1689733.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Nov 3, 2025
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Mei Yang; Tiankai Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Austin
    Description

    IntroductionUnequal healthcare access is linked to disparities in health outcomes. Public transit plays a critical role in promoting equitable healthcare access, particularly for disadvantaged populations. This study aims to assess disparities in hospital access via public transit in Austin, Texas, while considering socioeconomic and demographic factors.MethodsWe analyzed 30 hospitals using data from Definitive Healthcare, alongside demographic and socioeconomic factors for 283 census tracts in and around Austin, Texas, obtained from the U. S. Census Bureau. Variables included the percentage of the population who are Black or African American, Hispanic or Latino, uninsured, or have incomes below the poverty level. Using the TravelTime Isochrone API, we delineated one-hour public transit catchment areas for each hospital and overlaid them with demographic and socioeconomic data to examine spatial disparities in healthcare access and identify underserved communities.ResultsOverall, people in the western and eastern parts of the city lack hospital service coverage accessible by public transit within 1 hour. Of the 283 census tracts, 160 are either partially covered (125 tracts) or not covered at all (35 tracts), with 72 of the partially covered tracts having less than 50 percent area coverage. The eastern area has higher proportions of Black or African American, Hispanic or Latino, and uninsured populations, reflecting greater disparities.DiscussionThe results revealed notable disparities in healthcare access via public transit, where limited hospital coverage overlaps with high social and economic vulnerability. Targeted transit and healthcare planning for underserved areas and populations is needed to reduce these inequities.

  19. National Inpatient Sample (NIS) - Restricted Access Files

    • healthdata.gov
    • data.virginia.gov
    • +2more
    csv, xlsx, xml
    Updated Feb 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). National Inpatient Sample (NIS) - Restricted Access Files [Dataset]. https://healthdata.gov/w/6aiy-5mrj/default?cur=WSf0_k9NX48
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Feb 13, 2021
    Description

    The Healthcare Cost and Utilization Project (HCUP) National Inpatient Sample (NIS) is the largest publicly available all-payer inpatient care database in the United States. The NIS is designed to produce U.S. regional and national estimates of inpatient utilization, access, cost, quality, and outcomes. Unweighted, it contains data from more than 7 million hospital stays each year. Weighted, it estimates more than 35 million hospitalizations nationally. Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality (AHRQ), HCUP data inform decision making at the national, State, and community levels.

    Starting with the 2012 data year, the NIS is a sample of discharges from all hospitals participating in HCUP, covering more than 97 percent of the U.S. population. For prior years, the NIS was a sample of hospitals. The NIS allows for weighted national estimates to identify, track, and analyze national trends in health care utilization, access, charges, quality, and outcomes. The NIS's large sample size enables analyses of rare conditions, such as congenital anomalies; uncommon treatments, such as organ transplantation; and special patient populations, such as the uninsured. NIS data are available since 1988, allowing analysis of trends over time.

    The NIS inpatient data include clinical and resource use information typically available from discharge abstracts with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). Data elements include but are not limited to: diagnoses, procedures, discharge status, patient demographics (e.g., sex, age), total charges, length of stay, and expected payment source, including but not limited to Medicare, Medicaid, private insurance, self-pay, or those billed as ‘no charge’. The NIS excludes data elements that could directly or indirectly identify individuals.

    Restricted access data files are available with a data use agreement and brief online security training.

  20. 2022 American Community Survey: S2702 | Selected Characteristics of the...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2022 American Community Survey: S2702 | Selected Characteristics of the Uninsured in the United States (ACS 5-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST5Y2022.S2702?q=Health%20Insurance&g=2500000US2430
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Occupation titles and their 4-digit codes are based on the 2018 Standard Occupational Classification..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Percentage of people in the U.S. without health insurance 1997-2024 [Dataset]. https://www.statista.com/statistics/200957/percentage-of-americans-without-health-insurance/
Organization logo

Percentage of people in the U.S. without health insurance 1997-2024

Explore at:
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2024, *** percent of all people in the United States didn't have health insurance. The share of Americans without health insurance saw a steady increase from 2015 to 2019 before starting to decline from 2020 to 2023. Factors like the implementation of Medicaid expansion in additional states and growth in private health insurance coverage led to the decline in the uninsured population, despite the economic challenges due to the pandemic in 2020. More coverage after Obamacare The groups who saw the biggest improvement in health insurance coverage after the ACA was enacted were Hispanic and Black Americans. Meanwhile, the share of White Americans without health insurance also fell due to Obamacare, but the drop in that group wasn’t as dramatic as in other ethnic groups. This is primarily due to the fact that the uninsured rate among White Americans was much lower pre-ACA than among any other group, so there was less room for improvement. ACA was especially significant for those with low income Although the ACA was signed into law in 2010, many of its major provisions didn’t come into force until 2014, which accounts for the sharp drop in Americans without health insurance in 2014. Adults with a family income lower than 200% of Federal Poverty Level (FPL) were especially impacted by the law, as the share of uninsured adults in this income group dropped ** percent between 2013 and 2015.

Search
Clear search
Close search
Google apps
Main menu