In 2022, 39 percent of men and 31 percent of women in England were classed as overweight. At first glance, it may seem that the share of overweight people in England has decreased since the year 2000, but the share of obesity in England has increased since then, indicating that England’s problem with weight has gotten worse. Strain on health service due to obesity The number of hospital admissions as a result of obesity in England has increased alongside this rise in obesity. In the period 2019/20, over eight thousand women and 2.6 thousand men were admitted to hospital. An escalation from the admission levels in 2002/03. The highest number of admissions due to obesity were found in the age group 45 to 54 years, with over 3.1 thousand admissions in that age group. Situation in Scotland In Scotland in 2020, the mean Body Mass Index of women was 27.8 and for men it was 27.5. A BMI of over 25 is classed as overweight. While the share of adults classed as obese or morbidly obese in Scotland in this year was 30 percent for women and 26 percent for men.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This report presents information on obesity, physical activity and diet drawn together from a variety of sources for England. More information can be found in the source publications which contain a wider range of data and analysis. Each section provides an overview of key findings, as well as providing links to relevant documents and sources. Some of the data have been published previously by NHS Digital. A data visualisation tool (link provided within the key facts) allows users to select obesity related hospital admissions data for any Local Authority (as contained in the data tables), along with time series data from 2013/14. Regional and national comparisons are also provided. The report includes information on: Obesity related hospital admissions, including obesity related bariatric surgery. Obesity prevalence. Physical activity levels. Walking and cycling rates. Prescriptions items for the treatment of obesity. Perception of weight and weight management. Food and drink purchases and expenditure. Fruit and vegetable consumption. Key facts cover the latest year of data available: Hospital admissions: 2018/19 Adult obesity: 2018 Childhood obesity: 2018/19 Adult physical activity: 12 months to November 2019 Children and young people's physical activity: 2018/19 academic year
This statistic displays the share of overweight individuals in England in 2022, by gender and region. In this year, 74 percent of men and 63 percent of women in the North East of England were classed as overweight.
The prevalence of obesity among adults in England has been generally been trending upwards since 2000. In that year, 21 percent of men and women in England were classified as obese. However, by 2022 this share was 30 percent among women and 28 percent among men. Obesity causing strain on health service As the prevalence of obesity is increasing in England, the number of hospital admissions as a result of obesity has also increased. In the period 2019/20, around eight thousand women and nearly 2.7 thousand men were admitted to hospital. A huge rise from the admission levels fifteen years previously. The highest number of admissions due to obesity were found in the age group 45 to 54 years, with over 3.1 thousand admissions in that age group. Situation in Scotland In Scotland in 2022, the mean Body Mass Index of women was 28.1 and for men it was 27.9. A BMI of over 25 is classed as overweight. While the prevalence of obesity or morbid obesity in Scotland in 2020 was 30 percent among women and 26 percent among men.
The following indicators have been updated:
Data is presented at upper and lower tier local authority, region and England for the years 2015 to 2024 (2020 to 2024 for the percentage of adults meeting the ‘5 a day’ fruit and vegetable consumption recommendations indicator). England-level data on inequalities is also included for these indicators, displaying data by index of multiple deprivation decile, ethnic group, working status, disability, level of education, socioeconomic class, age and sex.
Details of the latest release can be found in ‘Obesity profile: short statistical commentary, May 2025’.
In 2019, 27 percent of boys and 20 percent of girls aged between 11 and 15 years in England were classed as obese. Additionally, in the age group two to ten years old, 15 percent of boys and eight percent of girls were obese. Prevalence among adults The prevalence of obesity among adults in England has been creeping upwards since 2000. In that year, 21 percent of men and women were classed as obese in England. However, by 2021 this share had increased to 26 percent for women and 25 percent for men. Obesity heavy on the health service The number of hospital admissions as a result of obesity in England has increased alongside the general increase in obesity. In the year 2019/20, almost 8.1 thousand women and 2.7 thousand men were admitted to hospital. A vast rise from the admission levels in 2002/03. The highest number of admissions due to obesity were found in the age group 45 to 54 years, with over 3.1 thousand admissions in that age group.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Proportion of adults with a Body Mass Index (BMI) greater than 25 and under 30 kg/m2. To help reduce the prevalence of obesity. Legacy unique identifier: P00846
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the percentage of year 6 children who are living with obesity and includes children who are living with severe obesity.
The BMI classification of each child is derived by calculating the child's BMI centile and assigning the BMI classification. Obese is defined as a BMI centile greater than or equal to the 95th centile. Severely obese is defined as a BMI centile greater than or equal to 99.6 (This BMI classification is a subset of the "Obese" classification).
The results are derived from the postcode of the school. Measurement of children's heights and weights, without shoes and coats and in normal, light, indoor clothing, was overseen by healthcare professionals and undertaken in school by trained staff. Measurements could be taken at any time during the academic year. Some children could be over one year older than others in the same school year at the point of measurement. This does not impact upon a child's BMI classification since BMI centile results are adjusted for age.
The National Child Measurement Programme (NCMP) collects height and weight measurements of children in reception (aged 4-5 years) and year 6 (aged 10-11 years) primarily in mainstream state-maintained schools in England. Local authorities are mandated to collect data from mainstream state-maintained schools but collection of data from special schools (schools for pupils with special educational needs and pupil referral units) and independent schools is encouraged.
Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
In 2022, 40 percent of women and 37 percent of men living in the North East of England were classed as obese, the highest rates for both genders. In most regions of England, around a third of adults had a BMI classed as obese.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This set of files contains public data used to validate the grocery data. All references to the original sources are provided below.CHILD OBESITYPeriodically, the English National Health Service (NHS) publishes statistics about various aspects of the health and habits of people living in England, including obesity. The NHS National Child Measurement (NCMP) measures the height and weight of children in Reception class (aged 4 to 5) and year 6 (aged 10 to 11), to assess overweight and obesity levels in children within primary schools. The program is carried out every year in England and statistics are produced at the level of Local Authority (that corresponds to Boroughs in London). We report the data for the school year 2015-2016 (file: child_obesity_london_borough_2015-2016.csv). For the school year 2013-2014, statistics in London are also available at ward-level (file: child_obesity_london_ward_2013-2014.csv)The files are comma-separated and contain the following fields: area_id: the id of the boroughnumber_reception_measured: number of children in reception year measurednumber_y6_measured: number of children in reception year measuredprevalence_overweight_reception: the prevalence (percentage) of overweight children in reception year prevalence_overweight_y6: the prevalence (percentage) of overweight children in year 6prevalence_obese_reception: the prevalence (percentage) of obese children in reception yearprevalence_obese_y6: the prevalence (percentage) of obese children in year 6ADULT OBESITYThe Active People Survey (APS) was a survey used to measure the number of adults taking part in sport across England and included two questions about the height and weight of participants. We report the results of the APS for the year 2012. Prevalence of underweight, healthy weight, overweight, and obese people at borough level are provided in the file london_obesity_borough_2012.csv.The file is comma-separated and contains the following fields: area_id: the id of the boroughnumber_measured: number of people who participated in the surveyprevalence_healthy_weight: the prevalence (percentage) of healthy-weight peopleprevalence_overweight: the prevalence (percentage) of overweight peopleprevalence_obese: the prevalence (percentage) of obese peopleBARIATRIC HOSPITALIZATIONThe NHS records and publishes an annual compendium report about the number of hospital admissions attributable to obesity or bariatric surgery (i.e., weight loss surgery used as a treatment for people who are very obese), and the number of prescription items provided in primary care for the treatment of obesity. The NHS provides both raw counts at the Local Authority level and numbers normalized by population living in those areas. In the file obesity_hospitalization_borough_2016.csv, we report the statistics for the year 2015 (measurements made between Jan 2015 and March 2016).The file is comma-separated and contains the following fields:area_id: the id of the boroughtotal_hospitalizations: total number of obesity-related hospitalizationstotal_bariatric: total number of hospitalizations for bariatric surgeryprevalence_hospitalizations: prevalence (percentage) of obesity-related hospitalizations prevalence_bariatric: prevalence (percentage) of bariatric surgery hospitalizations DIABETESThrough the Quality and Outcomes Framework, NHS Digital publishes annually the number of people aged 17+ on a register for diabetes at each GP practice in England. NHS also publishes the number of people living in a census area who are registered to any of the GP in England. Based on these two sources, an estimate is produced about the prevalence of diabetes in each area. The data (file diabetes_estimates_osward_2016.csv) was collected in 2016 at LSOA-level and published at ward-level.The file is comma-separated and contains the following fields:area_id: the id of the wardgp_patients: total number of GP patients gp_patients_diabetes: total number of GP patients with a diabetes diagnosisestimated_diabetes_prevalence: prevalence (percentage) of diabetesAREA MAPPINGMapping of Greater London postcodes into larger geographical aggregations. The file is comma-separated and contains the following fields:pcd: postcodelat: latitudelong: longitudeoa11: output arealsoa11: lower super output areamsoa11: medium super output areaosward: wardoslaua: borough
This statistic displays the share of children in England aged *** years who were classed as overweight or obese from 2007/08 to 2023/24. In 2020/21, almost ** percent of children aged *** years in England were classed as overweight or obese, the highest share in the provided time interval. In 2023/24, the share decreased to **** percent.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the percentage of reception year children who are living with obesity and includes children who are living with severe obesity.
The BMI classification of each child is derived by calculating the child's BMI centile and assigning the BMI classification. Obese is defined as a BMI centile greater than or equal to the 95th centile. Severely obese is defined as a BMI centile greater than or equal to 99.6 (This BMI classification is a subset of the "Obese" classification).
The results are derived from the postcode of the school. Measurement of children's heights and weights, without shoes and coats and in normal, light, indoor clothing, was overseen by healthcare professionals and undertaken in school by trained staff. Measurements could be taken at any time during the academic year. Some children could be over one year older than others in the same school year at the point of measurement. This does not impact upon a child's BMI classification since BMI centile results are adjusted for age.
The National Child Measurement Programme (NCMP) collects height and weight measurements of children in reception (aged 4-5 years) and year 6 (aged 10-11 years) primarily in mainstream state-maintained schools in England. Local authorities are mandated to collect data from mainstream state-maintained schools but collection of data from special schools (schools for pupils with special educational needs and pupil referral units) and independent schools is encouraged.
Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
This statistic displays the prevalence of adolescent obesity* in the United Kingdom (UK) from 1975 to 2016, by gender. Between 1975 and 2005, the obesity rates for female adolescents in the UK was greater than that of male adolescents. This changed in 2010, when *** percent of male adolescents were considered obese, compared to *** percent of female adolescents. While the rate of obesity has continued to rise for males, female adolescents were less likely to be obese in 2015 and 2016 than they were in 2010.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of obesity in adults (aged 18+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to obesity in adults (aged 18+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s adult population (aged 18+) that are obese was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s adult population that are obese was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA that are obese, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the adult population within that MSOA who are estimated to be obeseB) the NUMBER of adults within that MSOA who are estimated to be obeseAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to be obese compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people are obese, and where those people make up a large percentage of the population, indicating there is a real issue with obesity within the adult population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. This dataset also shows rural areas (with little or no population) that do not officially fall into any GP catchment area and for which there were no statistics regarding adult obesity (although this will not affect the results of this analysis if there are no people living in those areas).2. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of adult obesity, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of adult obesity.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P00848
This statistic displays the share of children aged *** years in England that are overweight or obese in 2023/24, by deprivation decile. In the most deprived decile approximately ** percent of children are overweight and obese compared with ** percent in the least deprived decile.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of obesity, inactivity and inactivity/obesity-related illnesses. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.The analysis incorporates data relating to the following:Obesity/inactivity-related illnesses (asthma, cancer, chronic kidney disease, coronary heart disease, depression, diabetes mellitus, hypertension, stroke and transient ischaemic attack)Excess weight in children and obesity in adults (combined)Inactivity in children and adults (combined)The analysis was designed with the intention that this dataset could be used to identify locations where investment could encourage greater levels of activity. In particular, it is hoped the dataset will be used to identify locations where the creation or improvement of accessible green/blue spaces and public engagement programmes could encourage greater levels of outdoor activity within the target population, and reduce the health issues associated with obesity and inactivity.ANALYSIS METHODOLOGY1. Obesity/inactivity-related illnessesThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Depression (in adults aged 18+)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illness The estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 8 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.2. Excess weight in children and obesity in adults (combined)For each MSOA, the number and percentage of children in Reception and Year 6 with excess weight was combined with population data (up to age 17) to estimate the total number of children with excess weight.The first part of the analysis detailed in section 1 was used to estimate the number of adults with obesity in each MSOA, based on GP-level statistics.The percentage of each MSOA’s adult population (aged 18+) with obesity was estimated, using GP-level data (see section 1 above). This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of adult patients registered with each GP that are obeseThe estimated percentage of each MSOA’s adult population with obesity was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of adults in each MSOA with obesity.The estimated number of children with excess weight and adults with obesity were combined with population data, to give the total number and percentage of the population with excess weight.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have excess weight/obesityB) the NUMBER of people within that MSOA who are estimated to have excess weight/obesityAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have excess weight/obesity, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from excess weight/obesity, and where those people make up a large percentage of the population, indicating there is a real issue with that excess weight/obesity within the population and the investment of resources to address that issue could have the greatest benefits.3. Inactivity in children and adultsFor each administrative district, the number of children and adults who are inactive was combined with population data to estimate the total number and percentage of the population that are inactive.Each district was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that district who are estimated to be inactiveB) the NUMBER of people within that district who are estimated to be inactiveAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the district predicted to be inactive, compared to other districts. In other words, those are areas where a large number of people are predicted to be inactive, and where those people make up a large percentage of the population, indicating there is a real issue with that inactivity within the population and the investment of resources to address that issue could have the greatest benefits.Summary datasetAn average of the scores calculated in sections 1-3 was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer the score to 1, the greater the number and percentage of people suffering from obesity, inactivity and associated illnesses. I.e. these are areas where there are a large number of people (both children and adults) who are obese, inactive and suffer from obesity/inactivity-related illnesses, and where those people make up a large percentage of the local population. These are the locations where interventions could have the greatest health and wellbeing benefits for the local population.LIMITATIONS1. For data recorded at the GP practice level, data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Levels of obesity, inactivity and associated illnesses: Summary (England). Areas with data missing’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children, we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of
SUMMARYIdentifies Middle Layer Super Output Areas (MSOAs) with the greatest levels of excess weight in children (as measured in children in Reception and Year 6 respectively: three year average between academic years 2016/17, 2017/18, 2018/19).Although this layer is symbolised based on an overall score for excess weight, the underlying data, including the raw data for Reception and Year 6 children respectively, is included in the dataset.ANALYSIS METHODOLOGYThe following analysis was carried out using data for Reception and Year 6 children independently:Each MSOA was given a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the NUMBER of children in that year group with excess weight and;B) the PERCENTAGE of children in that year group with excess weight.An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of children with excess weight, compared to other MSOAs, within that year group. In other words, those are areas where a large number of children have excess weight, and where those children make up a large percentage of the population of that age group, suggesting there is a real issue with childhood obesity in that area that needs addressing.The scores for the Reception and Year 6 analyses were added together then converted to relative scores between 1- 0 (1 = high levels of excess weight in children in both Reception and Year 6, 0 = very low levels of excess weight in either school year). The greater the total score, the greater the levels of excess weight in children within the local population, and the greater the benefits that could be achieved by investing in measures to reduce this issue in those areas.The data overall scores for Reception and Year 6 children, respectively, can be viewed via the following datasets:Excess weight in Reception children, England (three year average: academic years 2016-19)Excess weight in Year 6 children, England (three year average: academic years 2016-19)DATA SOURCESNational Child Measurement Programme: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.COPYRIGHT NOTICEBased on data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. Data analysed and published by Ribble Rivers Trust © 2021.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Descriptive statistics and percentage overweight or obese by predictor at age 4–5 years.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of depression in adults (aged 18+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to depression in adults (aged 18+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (aged 18+) with depression was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with depression was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with depression, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have depressionB) the NUMBER of people within that MSOA who are estimated to have depressionAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have depression, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from depression, and where those people make up a large percentage of the population, indicating there is a real issue with depression within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of depression, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of depression.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
In 2022, 39 percent of men and 31 percent of women in England were classed as overweight. At first glance, it may seem that the share of overweight people in England has decreased since the year 2000, but the share of obesity in England has increased since then, indicating that England’s problem with weight has gotten worse. Strain on health service due to obesity The number of hospital admissions as a result of obesity in England has increased alongside this rise in obesity. In the period 2019/20, over eight thousand women and 2.6 thousand men were admitted to hospital. An escalation from the admission levels in 2002/03. The highest number of admissions due to obesity were found in the age group 45 to 54 years, with over 3.1 thousand admissions in that age group. Situation in Scotland In Scotland in 2020, the mean Body Mass Index of women was 27.8 and for men it was 27.5. A BMI of over 25 is classed as overweight. While the share of adults classed as obese or morbidly obese in Scotland in this year was 30 percent for women and 26 percent for men.