Facebook
TwitterIn 2023, 42.14 percent of U.S. men aged 75 years and over were veterans - the highest share of any age group or gender. In comparison, less than one percent of women aged 75 and over were veterans at that time.
Facebook
TwitterThis statistic shows the percentage of U.S. adults who were veterans in the United States in 2024, by state. In 2024, about *** percent of adults in Alaska were veterans, whereas only *** percent of adults were veterans in the state of New York.
Facebook
TwitterIn 2023, there were almost *********** Black or African American veterans in the United States, representing around ** percent of the total veteran population.
Facebook
TwitterWelcome to the Kaggle dataset on The Impact of COVID-19 on Veterans in the United States! This dataset contains data on confirmed cases of COVID-19 in counties across the United States, as well as information on the percentage of each county's population that are veterans. With this dataset, you can investigate how the pandemic has impacted veterans specifically, and compare veteran case rates to the general population. How do veteran cases differ across age groups? Are there any geographical patterns? What can we learn about risk factors for COVID-19 among veterans? Download the dataset and explore for yourself today!
This dataset includes information on the number of confirmed cases of COVID-19 by county, as well as the percentage of the population in each county that are veterans. This data can be used to examine the relationship between veteran cases and the proportion of population who are veterans.
To do this, simply look at the 'CASES' and 'VET_CASES' columns for each county. The 'CASES' column represents the total number of confirmed cases of COVID-19 in that county, while the 'VET_CASES' column represents the number of confirmed cases among veterans. To compare these two values, simply divide 'VET_CASES' by 'CASES'. This will give you a ratio of veteran cases to total cases for each county.
You can then use this ratio to compare counties and see which ones have a higher proportion of veteran cases. This data can be used to help understand where more outreach may be needed to support veterans during this pandemic
File: CountyVACOVID.csv | Column name | Description | |:---------------------------|:-----------------------------------------------------------------------------------------------------------------------| | FIPS | Federal Information Processing Standards code that uniquely identifies counties within the USA. (String) | | COUNTY | County name. (String) | | STATE | State name. (String) | | POP | County population. (Integer) | | VETS | Number of veterans in the county. (Integer) | | VET_PERCENT | Percentage of the population that are veterans. (Float) | | CASES | Number of confirmed cases of COVID-19 in the county. (Integer) | | YESTER_CASES | Number of confirmed cases of COVID-19 in the county from the previous day. (Integer) | | VET_CASES | Number of confirmed cases of COVID-19 in veterans in the county. (Integer) | | VET_YESTER | Number of confirmed cases of COVID-19 in veterans in the county from the previous day. (Integer) | | LOWER_Hospitalizations | Lower bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | UPPER_Hospitalizations | Upper bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | DATE | Date of data. (Date) |
File: VAChart.csv | Column name | Description | |:------------------------|:----------------------------------------------------------------------------------| | DATE | Date of data. (Date) | | US Cases | The number of confirmed cases of COVID-19 in the United States. (Integer) | | **New US ...
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Labor Force Participation Rate - Women, Total Veterans, 18 Years and over (LNU01349528) from Jan 2000 to Sep 2025 about 18 years +, veterans, females, participation, civilian, labor force, labor, household survey, rate, and USA.
Facebook
TwitterThis layer shows veteran status of adults (18+) broken down by age and sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of adults who are veterans. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B21001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Unemployment Rate - Men, Total Veterans, 18 Years and over (LNU04049527) from Jan 2000 to Sep 2025 about 18 years +, veterans, males, household survey, unemployment, rate, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Veteran town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Veteran town. The dataset can be utilized to understand the population distribution of Veteran town by age. For example, using this dataset, we can identify the largest age group in Veteran town.
Key observations
The largest age group in Veteran, New York was for the group of age Under 5 years years with a population of 405 (12.19%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Veteran, New York was the 20 to 24 years years with a population of 71 (2.14%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Veteran town Population by Age. You can refer the same here
Facebook
TwitterIn 2024, about 1.4 million veterans were living in Texas - the most out of any state. Florida, California, North Carolina, and Georgia rounded out the top five states with the highest veteran population in that year.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Unemployment Rate - Veterans, Vietnam-Era and Earlier Wartime Periods, 18 Years and over, Men (LNU04073765) from Sep 2008 to Sep 2025 about korean war, Vietnam Era, World War, 18 years +, veterans, males, household survey, unemployment, rate, and USA.
Facebook
TwitterIn 2024, about *** percent of the estimated number of homeless veterans in the United States were Native American or Pacific Islanders. In comparison, **** percent were white and ** percent were Black, African American, or African.
Facebook
TwitterThis dataset is comprised of 1 year estimate data from the American Community Survey published as of 2019.
Facebook
TwitterAs of 2020, there were approximately 6.3 million veterans of the United States military still alive who served during the period of the Vietnam War from 1964 to 1975. Around 8.75 million service personnel served during the war, with 40% of those stationed in Vietnam and the surrounding Southeast Asian countries. Veterans of this conflict reflect the largest cohort of American veterans still alive in terms of service era.
Vietnam War veterans may still suffer from long-term health effects of their service during the war. These range from mental health conditions such as post-traumatic stress disorder (PTSD) and depression, to health conditions caused by exposure to toxic chemicals used to clear trees and plants in the Vietnamese jungle during the war. Since the signing of the Vietnam War Veterans Recognition Act of 2017 by President Donald J. Trump, March 29th is designated in the U.S. as National Vietnam War Veterans Day.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Veteran town by race. It includes the distribution of the Non-Hispanic population of Veteran town across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Veteran town across relevant racial categories.
Key observations
Of the Non-Hispanic population in Veteran town, the largest racial group is White alone with a population of 3,203 (97.86% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Veteran town Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show civilian veteran counts and percentages by county in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website. Naming conventions: Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)Suffixes:NoneChange over two periods_eEstimate from most recent ACS_mMargin of Error from most recent ACS_00Decennial 2000 Attributes: SumLevelSummary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)GEOIDCensus tract Federal Information Processing Series (FIPS) code NAMEName of geographic unitPlanning_RegionPlanning region designation for ARC purposesAcresTotal area within the tract (in acres)SqMiTotal area within the tract (in square miles)CountyCounty identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)CountyNameCounty NameCivPop18Plus_e# Civilian population 18 years and over, 2017CivPop18Plus_m# Civilian population 18 years and over, 2017 (MOE)pCivPop18Plus_e% Civilian population 18 years and over, 2017pCivPop18Plus_m% Civilian population 18 years and over, 2017 (MOE)CivVeteran_e# Civilian veterans, 2017CivVeteran_m# Civilian veterans, 2017 (MOE)pCivVeteran_e% Civilian veterans, 2017pCivVeteran_m% Civilian veterans, 2017 (MOE)last_edited_dateLast date the feature was edited by ARC Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2013-2017 For additional information, please visit the Census ACS website.
Facebook
TwitterThis service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data about Veteran Status, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the civilian population over the age of 18 that are Veterans.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): DP02Data downloaded from: CensusBureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual american indian student percentage from 2021 to 2023 for Warwick Veterans Middle School vs. Rhode Island and Warwick School District
Facebook
TwitterA survey from 2022 found that around 43 percent of military households surveyed felt health care provided by the VA in the U.S. was worse than that generally provided to most Americans. The statistic illustrates the percentage of U.S. veterans and military households who felt health care from the VA was better than what most Americans receive as of 2022.
Facebook
TwitterVBA EDUCATION PROGRAMS to provide, through purchase and/or fabrication, prosthetic and related appliances, equipment and services to eligible veterans so that they may live and work as productive citizens. Veterans eligible for prosthetic services are service-connected veterans seeking care for a service-connected disability; veterans with compensable service-connected disabilities generally rated 10 percent or more; former prisoners of war, veterans discharged or released from active military service for a disability that was incurred or aggravated in the line of duty, and veterans who are in receipt of Section 1151 benefits; veterans who are in receipt of increased pension based on a need of regular aid and attendance or by reason of being permanently housebound; veterans who have annual income and net worth below the "means test" threshold; all other veterans who are not required to pay a copayment for their care, i.e., veterans of the Mexican border period and World War I, compensated zero (0) percent service-connected veterans who are receiving statutory awards, veterans exposed to a toxic substance, radiation or environmental hazard (limited to certain disabilities); and veterans who must pay a copayment for their care. Ineligible veterans are nonservice-connected veterans residing or sojourning in foreign lands.
Facebook
TwitterIn the state of New York, around ** percent of civilian veterans reported a VA service-related disability. This statistic depicts the percentage of civilian veterans aged between 21 and 64 with a VA service-connected disability in the United States in 2023, by state.
Facebook
TwitterIn 2023, 42.14 percent of U.S. men aged 75 years and over were veterans - the highest share of any age group or gender. In comparison, less than one percent of women aged 75 and over were veterans at that time.