18 datasets found
  1. 2010-2014 ACS Health Insurance by Age by Race Variables - Boundaries

    • gis-for-racialequity.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Dec 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). 2010-2014 ACS Health Insurance by Age by Race Variables - Boundaries [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/1de77825c6af4da1aab7b51ed8cb9b64
    Explore at:
    Dataset updated
    Dec 1, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black). Later vintages of this layer have a different age group for children that includes age 18. This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  2. c

    Health Insurance

    • data.clevelandohio.gov
    Updated Aug 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2023). Health Insurance [Dataset]. https://data.clevelandohio.gov/datasets/health-insurance/explore
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.


    This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right.

    Current Vintage: 2019-2023
    ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)

    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).
    • Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.
    • Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.
    • Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:
      • The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
      • Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
      • The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.
      • The estimate is controlled. A statistical test for sampling variability is not appropriate.
      • The data for this geographic area cannot be displayed because the number of sample cases is too small.

  3. d

    HealthInsuranceCoverage

    • catalog.data.gov
    • detroitdata.org
    • +7more
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Driven Detroit (2025). HealthInsuranceCoverage [Dataset]. https://catalog.data.gov/dataset/healthinsurancecoverage-d3b6c
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Data Driven Detroit
    Description

    Health insurance coverage rates, from the American Community Survey, 2014 5-year Average, by Zip. For the Detroit Tri-County region. Data Driven Detroit calculated the rates by dividing the total number of insured by the total number of people in each age group.

  4. uninsured state

    • gis-for-racialequity.hub.arcgis.com
    Updated May 10, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2017). uninsured state [Dataset]. https://gis-for-racialequity.hub.arcgis.com/datasets/UrbanObservatory::uninsured-state
    Explore at:
    Dataset updated
    May 10, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This layer shows the percentage of people without health insurance in the U.S. by state and county, from American Community Survey 5-year estimates: 2011-2015 (Table GCT2701). The map switches from state data to county data as the map zooms in. The national average was 13.0%, down from approximately 20% in 2005.A person’s ability to access health services has a profound effect on every aspect of his or her health. Many Americans do not have a primary care provider (PCP) or health center where they can receive regular medical services. People without medical insurance are more likely to lack a usual source of medical care, such as a PCP, and are more likely to skip routine medical care due to costs, increasing their risk for serious and disabling health conditions. When they do access health services, they are often burdened with large medical bills and out-of-pocket expenses. Increasing access to both routine medical care and medical insurance are vital steps in improving the health of all Americans.

  5. D

    Health Insurance Coverage by ZIP Code Tabulation Area

    • detroitdata.org
    • data.ferndalemi.gov
    • +1more
    Updated Jul 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2019). Health Insurance Coverage by ZIP Code Tabulation Area [Dataset]. https://detroitdata.org/dataset/health-insurance-coverage-by-zip-code-tabulation-area
    Explore at:
    zip, arcgis geoservices rest api, geojson, csv, html, kmlAvailable download formats
    Dataset updated
    Jul 24, 2019
    Dataset provided by
    City of Detroit
    Description
    This dataset provides an estimate of the percent of Detroit residents who reported having health insurance at the time they completed the American Community Survey (ACS). The data is averaged over 5 years. This data can be also be accessed in Table S2701 on the American FactFinder website.

    Note that the data is provided by ZIP Code Tabulation Area (ZCTA), which may not exactly match USPS ZIP Code service areas. For more information: https://web.archive.org/web/20130617034846/http://www.census.gov/geo/reference/zctas.html

  6. e

    ACS Health Insurance Coverage Variables - Centroids

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +4more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Health Insurance Coverage Variables - Centroids [Dataset]. https://coronavirus-resources.esri.com/maps/7c69956008bb4019bbbe67ed9fb05dbb
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  7. Where are the Uninsured?

    • data.amerigeoss.org
    esri rest, html
    Updated Jul 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). Where are the Uninsured? [Dataset]. https://data.amerigeoss.org/sk/dataset/where-are-the-uninsured
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Jul 22, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    Local, state, tribal, and federal agencies use health insurance coverage data to plan government programs, determine eligibility criteria, and encourage eligible people to participate in health insurance programs. This map shows where those with no health insurance live. Map opens in Houston, TX. Use the bookmarks or search to see other cities. Zoom out to see map render data for counties and states.


    Size of symbol depicts the count of those who are uninsured, color depicts the percent of those who are uninsured. Pop-up displays percentage by age group.

    This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

  8. a

    ACS % of Black or African American Population with No Health Insurance...

    • impactmap-smudallas.hub.arcgis.com
    Updated Feb 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SMU (2024). ACS % of Black or African American Population with No Health Insurance Coverage [Dataset]. https://impactmap-smudallas.hub.arcgis.com/datasets/acs-of-black-or-african-american-population-with-no-health-insurance-coverage
    Explore at:
    Dataset updated
    Feb 27, 2024
    Dataset authored and provided by
    SMU
    Area covered
    Description

    This layer shows health insurance coverage sex and race by age group. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer is symbolized to show the percent of Black or African American alone population with no health insurance coverage.

  9. d

    Dataplex: United Healthcare Transparency in Coverage | 76,000+ US Employers...

    • datarade.ai
    .json
    Updated Jan 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataplex (2025). Dataplex: United Healthcare Transparency in Coverage | 76,000+ US Employers | Insurance Data | Ideal for Healthcare Cost Analysis [Dataset]. https://datarade.ai/data-products/dataplex-united-healthcare-transparency-in-coverage-76-000-dataplex
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Jan 1, 2025
    Dataset authored and provided by
    Dataplex
    Area covered
    United States of America
    Description

    United Healthcare Transparency in Coverage Dataset

    Unlock the power of healthcare pricing transparency with our comprehensive United Healthcare Transparency in Coverage dataset. This invaluable resource provides unparalleled insights into healthcare costs, enabling data-driven decision-making for insurers, employers, researchers, and policymakers.

    Key Features:

    • Extensive Coverage: Access detailed pricing information for a wide range of medical procedures and services across the United States, covering approximately 76,000 employers.
    • Granular Data: Analyze costs at the provider, plan, and employer levels, allowing for in-depth comparisons and trend analysis.
    • Massive Scale: Over 400TB of data generated monthly, providing a wealth of information for comprehensive analysis.
    • Historical Perspective: Track pricing changes over time to identify patterns and forecast future trends.
    • Regular Updates: Stay current with the latest pricing information, ensuring your analyses are always based on the most recent data.

    Detailed Data Points:

    For each of the 76,000 employers, the dataset includes: 1. In-network negotiated rates for covered items and services 2. Historical out-of-network allowed amounts and billed charges 3. Cost-sharing information for specific items and services 4. Pricing data for medical procedures and services across providers, plans, and employers

    Use Cases

    For Insurers: - Benchmark your rates against competitors - Optimize network design and provider contracting - Develop more competitive and cost-effective insurance products

    For Employers: - Make informed decisions about health plan offerings - Negotiate better rates with insurers and providers - Implement cost-saving strategies for employee healthcare

    For Researchers: - Conduct in-depth studies on healthcare pricing variations - Analyze the impact of policy changes on healthcare costs - Investigate regional differences in healthcare pricing

    For Policymakers: - Develop evidence-based healthcare policies - Monitor the effectiveness of price transparency initiatives - Identify areas for potential cost-saving interventions

    Data Delivery

    Our flexible data delivery options ensure you receive the information you need in the most convenient format:

    • Custom Extracts: We can provide targeted datasets focusing on specific regions, procedures, or time periods.
    • Regular Reports: Receive scheduled updates tailored to your specific requirements.

    Why Choose Our Dataset?

    1. Expertise: Our team has extensive experience in healthcare data retrieval and analysis, ensuring high-quality, reliable data.
    2. Customization: We can tailor the dataset to meet your specific needs, whether you're interested in particular companies, regions, or procedures.
    3. Scalability: Our infrastructure is designed to handle the massive scale of this dataset (400TB+ monthly), allowing us to provide comprehensive coverage without compromise.
    4. Support: Our dedicated team is available to assist with data interpretation and technical support.

    Harness the power of healthcare pricing transparency to drive your business forward. Contact us today to discuss how our United Healthcare Transparency in Coverage dataset can meet your specific needs and unlock valuable insights for your organization.

  10. Cancer data of United States of America

    • kaggle.com
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanisha1604 (2024). Cancer data of United States of America [Dataset]. https://www.kaggle.com/datasets/tanisha1604/cancer-data-of-united-states-of-america/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tanisha1604
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    United States
    Description

    About Dataset

    The dataset contains 2 .csv files This file contains various demographic and health-related data for different regions. Here's a brief description of each column:

    File 1st

    • avganncount: Average number of cancer cases diagnosed annually.

    • avgdeathsperyear: Average number of deaths due to cancer per year.

    • target_deathrate: Target death rate due to cancer.

    • incidencerate: Incidence rate of cancer.

    • medincome: Median income in the region.

    • popest2015: Estimated population in 2015.

    • povertypercent: Percentage of population below the poverty line.

    • studypercap: Per capita number of cancer-related clinical trials conducted.

    • binnedinc: Binned median income.

    • medianage: Median age in the region.

    • pctprivatecoveragealone: Percentage of population covered by private health insurance alone.

    • pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.

    • pctpubliccoverage: Percentage of population covered by public health insurance.

    • pctpubliccoveragealone: Percentage of population covered by public health insurance only.

    • pctwhite: Percentage of White population.

    • pctblack: Percentage of Black population.

    • pctasian: Percentage of Asian population.

    • pctotherrace: Percentage of population belonging to other races.

    • pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.

    File 2nd

    This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:

    • statefips: The FIPS code representing the state.

    • countyfips: The FIPS code representing the county or census area within the state.

    • avghouseholdsize: The average household size in the region.

    • geography: The geographical location, typically represented as the county or census area name followed by the state name.

    Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.

  11. z

    Public Health Insurance Coverage

    • zipatlas.com
    Updated Dec 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zip Atlas Inc (2023). Public Health Insurance Coverage [Dataset]. https://zipatlas.com/zip-code-database-premium.htm
    Explore at:
    Dataset updated
    Dec 18, 2023
    Dataset authored and provided by
    Zip Atlas Inc
    License

    https://zipatlas.com/zip-code-database-download.htm#licensehttps://zipatlas.com/zip-code-database-download.htm#license

    Description

    Public Health Insurance Coverage Report based on US Census and American Community Survey Data.

  12. a

    Health Insurance

    • hub.arcgis.com
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2023). Health Insurance [Dataset]. https://hub.arcgis.com/datasets/ClevelandGIS::demographic-profiles?layer=12
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 7, 2023The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  13. a

    Health Insurance Coverage 2017-2021- COUNTIES

    • hub.arcgis.com
    • mce-data-uscensus.hub.arcgis.com
    Updated Mar 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2023). Health Insurance Coverage 2017-2021- COUNTIES [Dataset]. https://hub.arcgis.com/datasets/22ab3ff1b2ec42548f378710d277ce8f
    Explore at:
    Dataset updated
    Mar 24, 2023
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Health Insurance Coverage. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): B27010, DP03Data downloaded from: Census Bureau's API for American Community SurveyDate of API call: February 16, 2023National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  14. Health Insurance Coverage 2018-2022 - STATES

    • hub.arcgis.com
    • mce-data-uscensus.hub.arcgis.com
    Updated Feb 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). Health Insurance Coverage 2018-2022 - STATES [Dataset]. https://hub.arcgis.com/maps/91d772d271644a15b59a5c97ead2917a
    Explore at:
    Dataset updated
    Feb 4, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Health Insurance Coverage. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Percent of Population with No Health Insurance Coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B27010, DP03Data downloaded from: Census Bureau's API for American Community SurveyDate of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  15. a

    Disability and Health Insurance - Seattle Neighborhoods

    • data-seattlecitygis.opendata.arcgis.com
    • data.seattle.gov
    • +1more
    Updated Feb 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2024). Disability and Health Insurance - Seattle Neighborhoods [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::disability-and-health-insurance-seattle-neighborhoods
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on disabilities and health insurance related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes C21007 Age by Veteran Status by Poverty Status in the Past 12 Months by Disability Status, B27010 Types of Health Insurance Coverage by Age, B22010 Receipt of Food Stamps/SNAP by Disability Status for Households. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): C21007, B27010, B22010Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  16. a

    HEALTH INSURANCE BY EMPLOYMENT STATUS (B27011)

    • data-seattlecitygis.opendata.arcgis.com
    • data.seattle.gov
    • +1more
    Updated Aug 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). HEALTH INSURANCE BY EMPLOYMENT STATUS (B27011) [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::health-insurance-by-employment-status-b27011
    Explore at:
    Dataset updated
    Aug 15, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Description

    Table from the American Community Survey (ACS) B27011 health insurance coverage status and type by employment status. These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2015 shown by the corresponding census tract vintage. Also includes the most recent release annually.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2015, 2020, 2021, 2022, 2023ACS Table(s): B27011Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  17. a

    City of Bozeman Health Insurance Coverage

    • public-bozeman.opendata.arcgis.com
    • strategic-plan-bozeman.opendata.arcgis.com
    Updated Sep 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Bozeman, Montana (2023). City of Bozeman Health Insurance Coverage [Dataset]. https://public-bozeman.opendata.arcgis.com/datasets/city-of-bozeman-health-insurance-coverage
    Explore at:
    Dataset updated
    Sep 27, 2023
    Dataset authored and provided by
    City of Bozeman, Montana
    Area covered
    Bozeman
    Description

    This feature service contains data from the American Community Survey: 5-year Estimates Subject Tables for City of Bozeman, MT. The attributes come from the Selected Characteristics of Health Insurance Coverage in the United States table (S2701). Processing Notes:Data was downloaded from the U.S. Census Bureau and imported into FME to create an AGOL Feature Service. Each attribute has been given an abbreviated alias name derived from the American Community Survey (ACS) categorical descriptions. The Data Dictionary below includes all given ACS attribute name aliases. For example: Pct_Uninsured_EduB is the percent of the population that is without health insurance coverage, noninstitutionalized 26 years and over, with a Bachelor's degree or higherData DictionaryACS_EST_YR: American Community Survey 5-Year Estimate Subject Tables data yearGEO_ID: Census Bureau geographic identifierNAME: Specified geographyPct_Insured: Percent of the population with health insurance coveragePct_Uninsured: Percent of the population without health insurance coverageRace/Ethinicity:A: AsianAIAN: American Indian or Alaska NativeBAA: Black or African AmericanHL: Hispanic or LatinoNHPI: Native Hawaiian or other Pacific IslanderW: WhiteOther: Some other raceTwo: Two or more racesAnnual Income:IncUnder25k: Household income below $25,000Inc25kto50k:Household income from $25,000 to $49,999Inc50kto75k: Household income from $50,000 to $74,999Inc75kto100k: Household income from $75,000 to $99,999IncOver100k: Household income $100,000 and overEducational Attainment (Civilian noninstitutionalized population 26 years and over):EduB: Bachelor's degree or higherEduHS: High school graduate (includes equivalency)EduNHS: Less than high school graduateEduA: Some college or associate's degreeDownload Selected Characteristics of Health Insurance Coverage in the United States data for Bozeman, MT. Additional LinksU.S. Census BureauU.S. Census Bureau American Community Survey (ACS)About the American Community Survey

  18. a

    No Health Insurance v2 0

    • ct-ejscreen-v1-connecticut.hub.arcgis.com
    Updated Aug 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CIRCA_uconn (2023). No Health Insurance v2 0 [Dataset]. https://ct-ejscreen-v1-connecticut.hub.arcgis.com/items/0a4f34a168ad46879b064418111b989d
    Explore at:
    Dataset updated
    Aug 2, 2023
    Dataset authored and provided by
    CIRCA_uconn
    Area covered
    Description

    This indicator represents the tracts ranked by their percentile level of percentage of the population without health insurance. The data source is 2017-2021 American Community Survey, 5-year estimates. The percentile and the rank were calculated. A percentile is a score indicating the value below which a given percentage of observations in a group of observations fall. It indicates the relative position of a particular value within a dataset. For example, the 20th percentile is the value below which 20% of the observations may be found. The rank refers to a process of arranging percentiles in descending order, starting from the highest percentile and ending with the lowest percentile. Once the percentiles are ranked, a normalization step is performed to rescale the rank values between 0 and 10. A rank value of 10 represents the highest percentile, while a rank value of 0 corresponds to the lowest percentile in the dataset. The normalized rank provides a relative assessment of the position of each percentile within the distribution, making it simpler to understand the relative magnitude of differences between percentiles. Normalization between 0 and 10 ensures that the rank values are standardized and uniformly distributed within the specified range. This normalization allows for easier interpretation and comparison of the rank values, as they are now on a consistent scale. For detailed methods, go to connecticut-environmental-justice.circa.uconn.edu.

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2020). 2010-2014 ACS Health Insurance by Age by Race Variables - Boundaries [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/1de77825c6af4da1aab7b51ed8cb9b64
Organization logo

2010-2014 ACS Health Insurance by Age by Race Variables - Boundaries

Explore at:
Dataset updated
Dec 1, 2020
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black). Later vintages of this layer have a different age group for children that includes age 18. This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Search
Clear search
Close search
Google apps
Main menu