Number and percentage of deaths, by place of death (in hospital or non-hospital), 1991 to most recent year.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This publication of the SHMI relates to discharges in the reporting period March 2024 - February 2025. The SHMI is the ratio between the actual number of patients who die following hospitalisation at the trust and the number that would be expected to die on the basis of average England figures, given the characteristics of the patients treated there. The SHMI covers patients admitted to hospitals in England who died either while in hospital or within 30 days of being discharged. To help users of the data understand the SHMI, trusts have been categorised into bandings indicating whether a trust's SHMI is 'higher than expected', 'as expected' or 'lower than expected'. For any given number of expected deaths, a range of observed deaths is considered to be 'as expected'. If the observed number of deaths falls outside of this range, the trust in question is considered to have a higher or lower SHMI than expected. The expected number of deaths is a statistical construct and is not a count of patients. The difference between the number of observed deaths and the number of expected deaths cannot be interpreted as the number of avoidable deaths or excess deaths for the trust. The SHMI is not a measure of quality of care. A higher than expected number of deaths should not immediately be interpreted as indicating poor performance and instead should be viewed as a 'smoke alarm' which requires further investigation. Similarly, an 'as expected' or 'lower than expected' SHMI should not immediately be interpreted as indicating satisfactory or good performance. Trusts may be located at multiple sites and may be responsible for 1 or more hospitals. A breakdown of the data by site of treatment is also provided, as well as a breakdown of the data by diagnosis group. Further background information and supporting documents, including information on how to interpret the SHMI, are available on the SHMI homepage (see Related Links).
The dataset contains risk-adjusted mortality rates, quality ratings, and number of deaths and cases for 6 medical conditions treated (Acute Stroke, Acute Myocardial Infarction, Heart Failure, Gastrointestinal Hemorrhage, Hip Fracture and Pneumonia) and 3 procedures performed (Carotid Endarterectomy, Pancreatic Resection, and Percutaneous Coronary Intervention) in California hospitals. The 2023 IMIs were generated using AHRQ Version 2024, while previous years' IMIs were generated with older versions of AHRQ software (2022 IMIs by Version 2023, 2021 IMIs by Version 2022, 2020 IMIs by Version 2021, 2019 IMIs by Version 2020, 2016-2018 IMIs by Version 2019, 2014 and 2015 IMIs by Version 5.0, and 2012 and 2013 IMIs by Version 4.5). The differences in the statistical method employed and inclusion and exclusion criteria using different versions can lead to different results. Users should not compare trends of mortality rates over time. However, many hospitals showed consistent performance over years; “better” performing hospitals may perform better and “worse” performing hospitals may perform worse consistently across years. This dataset does not include conditions treated or procedures performed in outpatient settings. Please refer to statewide table for California overall rates: https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings/resource/af88090e-b6f5-4f65-a7ea-d613e6569d96
The dataset contains risk-adjusted mortality rates, and number of deaths and cases for 6 medical conditions treated (Acute Stroke, Acute Myocardial Infarction, Heart Failure, Gastrointestinal Hemorrhage, Hip Fracture and Pneumonia) and 6 procedures performed (Abdominal Aortic Aneurysm Repair, Carotid Endarterectomy, Craniotomy, Esophageal Resection, Pancreatic Resection, Percutaneous Coronary Intervention) in California hospitals. The 2014 and 2015 IMIs were generated using AHRQ Version 5.0, while the 2012 and 2013 IMIs were generated using AHRQ Version 4.5. The differences in the statistical method employed and inclusion and exclusion criteria using different versions can lead to different results. Users should not compare trends of mortality rates over time. However, many hospitals showed consistent performance over years; “better” performing hospitals may perform better and “worse” performing hospitals may perform worse consistently across years. This dataset does not include conditions treated or procedures performed in outpatient settings. Please refer to hospital table for hospital rates: https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This indicator is designed to accompany the SHMI publication. The SHMI includes all deaths reported of patients who were admitted to non-specialist acute trusts in England and either died while in hospital or within 30 days of discharge. Deaths related to COVID-19 are excluded from the SHMI. A contextual indicator on the percentage of deaths reported in the SHMI which occurred in hospital and the percentage which occurred outside of hospital is produced to support the interpretation of the SHMI. Notes: 1. As of the July 2020 publication, COVID-19 activity has been excluded from the SHMI. The SHMI is not designed for this type of pandemic activity and the statistical modelling used to calculate the SHMI may not be as robust if such activity were included. Activity that is being coded as COVID-19, and therefore excluded, is monitored in the contextual indicator 'Percentage of provider spells with COVID-19 coding' which is part of this publication. 2. Please note that there was a fall in the overall number of spells from March 2020 due to COVID-19 impacting on activity for England and the number has not returned to pre-pandemic levels. Further information at Trust level is available in the contextual indicator ‘Provider spells compared to the pre-pandemic period’ which is part of this publication. 3. There is a shortfall in the number of records for East Lancashire Hospitals NHS Trust (trust code RXR) and The Princess Alexandra Hospital NHS Trust (trust code RQW). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 4. Frimley Health NHS Foundation Trust (trust code RDU) stopped submitting data to the Secondary Uses Service (SUS) during June 2022 and did not start submitting data again until April 2023 due to an issue with their patient records system. This is causing a large shortfall in records and values for this trust should be viewed in the context of this issue. 5. Due to a problem with the process which links Hospital Episode Statistics (HES) data to the Office for National Statistics (ONS) death registrations data, some in-hospital deaths have been counted as survivals in a small number of trusts. This affects 80 spells in the current time period for Mid and South Essex NHS Foundation Trust (trust code RAJ) meaning that the number of observed deaths has been underestimated and so the results for this trust should be interpreted with caution. For the other trusts, the number of affected spells is 5 or fewer and so the impact will be small. 6. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 7. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.
These mortality indicators provide information to help the National Health Service (NHS) monitor success in preventing potentially avoidable deaths following hospital treatment.
The National Confidential Enquiry into Patient Outcome and Death (NCEPOD) have, over many years, consistently shown that some deaths are associated with shortcomings in health care. The NHS may be helped to prevent such potentially avoidable deaths by seeing comparative figures and learning lessons from the confidential enquiries, and from the experience of hospitals with low death rates.
The indicators presented measure mortality rates for patients, admitted for certain conditions or procedures, where death occurred either in hospital or within 30 days post discharge.
There are five ‘deaths within 30 days’ indicators:
Operative procedures:
Emergency admissions :
Data are presented for the 10-year period 2005/06 to 2014/15 , and in separate breakdowns for females, males and persons. The indicators are presented at the local government geographies and by individual institution.
These indicators were previously published in the Compendium of Clinical and Health Indicators and are now published on the Health and Social Care Information Centre’s (HSCIC) Indicator Portal as part of the continuing release of this indicator set.
Data, along with indicator specifications providing details of indicator construction, statistical methods and interpretation considerations, can be accessed by visiting the HSCIC’s Indicator Portal and using the menu to navigate to Compendium of population health indicators > Hospital care > Outcomes > Deaths.
In 2018, over *** million people died due to poor quality of care in hospitals in the south Asian country of India. Furthermore, over *** people died due to insufficient access to healthcare in the country during that time.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains the number of cases, number of in hospital/30 day deaths, observed, expected and risk- adjusted mortality rates for cardiac surgery and percutaneous coronary interventions (PCI) by hospital. Regions represent where the hospitals are located. The initial Health Data NY dataset includes patients discharged between January 1, 2008, and December 31, 2010. Analyses of risk-adjusted mortality rates and associated risk factors are provided for 2010 and for the three-year period from 2008 through 2010. For PCI, analyses of all cases, non-emergency cases (which represent the majority of procedures) and emergency cases are included. Subsequent year reports data will be appended to this dataset. For more information check out: http://www.health.ny.gov/health_care/consumer_information/cardiac_surgery/ or go to the “About” tab.
Provisional count of deaths involving coronavirus disease 2019 (COVID-19) in the United States by week of death and by hospital referral region (HRR). HRR is determined by county of occurrence. Weekly weighted counts of deaths from all causes and due to COVID-19 are provided by HRR overall and for decedents 65 years and older. The weighted counts by HRRs are based on published methods for aggregating county-level data to HRRs. More detail about aggregating to HRRs from counties can be found in the following: https://github.com/Dartmouth-DAC/covid-19-hrr-mapping https://dartmouthatlas.org/covid-19/hrr-mapping/
In 2021, approximately *** million inpatient discharges and deaths from hospitals were recorded in Hong Kong. Before that year, the number of inpatient discharges and deaths from hospitals had seen an ongoing increase since 2010.
In the United States from 2022 to 2024, the 30-day mortality rate in hospital at home programs for patients with respiratory infections and inflammations with MCC was around ** deaths per 1,000. In comparison, the mortality rate in comparable hospitals for the same diagnosis related groups was almost *** deaths per 1,000.
The Summary Hospital-level Mortality Indicator (SHMI) reports on mortality at trust level across the NHS in England using a standard and transparent methodology. It is produced and published monthly as a National Statistic by NHS Digital.
The SHMI is the ratio between the actual number of patients who die following hospitalisation at the trust and the number that would be expected to die on the basis of average England figures, given the characteristics of the patients treated there
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table presents a wide variety of historical data in the field of health, lifestyle and health care. Figures on births and mortality, causes of death and the occurrence of certain infectious diseases are available from 1900, other series from later dates. In addition to self-perceived health, the table contains figures on infectious diseases, hospitalisations per diagnosis, life expectancy, lifestyle factors such as smoking, alcohol consumption and obesity, and causes of death. The table also gives information on several aspects of health care, such as the number of practising professionals, the number of available hospital beds, nursing day averages and the expenditures on care. Many subjects are also covered in more detail by data in other tables, although sometimes with a shorter history. Data on notifiable infectious diseases and HIV/AIDS are not included in other tables.
Data available from: 1900
Status of the figures:
2025: The available figures are definite.
2024: Most available figures are definite. Figures are provisional for: - notifiable infectious diseases, hiv, aids; - causes of death.
2023: Most available figures are definite. Figures are provisional for: - notifiable infectious diseases, HIV/AIDS; - diagnoses at hospital admissions; - number of hospital discharges and length of stay; - number of hospital beds; - health professions; - perinatal and infant mortality. Figures are revised provisional for: - expenditures on health and welfare.
2022: Most available figures are definite. Figures are provisional for: - notifiable infectious diseases, HIV/AIDS; - diagnoses at hospital admissions; - number of hospital discharges and length of stay; - number of hospital beds; - health professions. Figures are revised provisional for: - expenditures on health and welfare.
2021: Most available figures are definite. Figures are provisional for: - notifiable infectious diseases, HIV/AIDS; Figures are revised provisional for: - expenditures on health and welfare.
2020 and earlier: Most available figures are definite. Due to 'dynamic' registrations, figures for notifiable infectious diseases, HIV/AIDS remain provisional.
Changes as of 4 July 2025: The most recent available figures have been added for: - population on January 1; - live born children, deaths; - persons in (very) good health; - notifiable infectious diseases, HIV/AIDS; - diagnoses at hospital admissions; - use of medication; - sickness absence; - lifestyle; - use of health care services; - number of hospital discharges and length of stay; - number of hospital beds; - health professions; - expenditures on health and welfare; - healthy life expectancy; - causes of death.
Changes as of 18 december 2024: - Due to a revision of the statistics Health and welfare expenditure 2021, figures for expenditure on health and welfare have been replaced from 2021 onwards. - Revised figures on the volume index of healthcare costs are not yet available, these figures have been deleted from 2021 onwards.
When will new figures be published? December 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This scatter chart displays death rate (per 1,000 people) against hospital beds (per 1,000 people). The data is about regions.
In 2019, the crude mortality rate per thousand inhabitants in Dubai amounted to ****. In the same year, the total number of deaths inside the hospitals in Dubai amounted to about *** thousand deaths taking place in private and governmental hospitals.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 tests, cases, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported daily, with
In 2023, the highest number of deaths, approximately 1015,270, occurred at the hospitals in Japan. Around 267,330 people died in their private homes.
Inpatient Statistics (i) Inpatient Discharges and Deaths in All Hospitals Classified by Disease, 2023 (ii) Inpatient Discharges and Deaths in Hospitals and Registered Deaths in Hong Kong by Disease, 2023
In 2022, diseases of the circulatory system was the most common cause of death in Malaysian hospitals with a share of around ***** percent. In the same year, the country reported that the main reasons for hospitalization were pregnancy related.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This scatter chart displays death rate (per 1,000 people) against hospital beds (per 1,000 people) in the Americas. The data is filtered where the date is 2021. The data is about countries per year.
Number and percentage of deaths, by place of death (in hospital or non-hospital), 1991 to most recent year.