7 datasets found
  1. F

    Homeownership Rate in the United States

    • fred.stlouisfed.org
    json
    Updated Jul 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Homeownership Rate in the United States [Dataset]. https://fred.stlouisfed.org/series/RHORUSQ156N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 28, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Homeownership Rate in the United States (RHORUSQ156N) from Q1 1965 to Q2 2025 about homeownership, housing, rate, and USA.

  2. Loan Approval Classification Dataset

    • kaggle.com
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ta-wei Lo (2024). Loan Approval Classification Dataset [Dataset]. https://www.kaggle.com/datasets/taweilo/loan-approval-classification-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ta-wei Lo
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    1. Data Source

    This dataset is a synthetic version inspired by the original Credit Risk dataset on Kaggle and enriched with additional variables based on Financial Risk for Loan Approval data. SMOTENC was used to simulate new data points to enlarge the instances. The dataset is structured for both categorical and continuous features.

    2. Metadata

    The dataset contains 45,000 records and 14 variables, each described below:

    ColumnDescriptionType
    person_ageAge of the personFloat
    person_genderGender of the personCategorical
    person_educationHighest education levelCategorical
    person_incomeAnnual incomeFloat
    person_emp_expYears of employment experienceInteger
    person_home_ownershipHome ownership status (e.g., rent, own, mortgage)Categorical
    loan_amntLoan amount requestedFloat
    loan_intentPurpose of the loanCategorical
    loan_int_rateLoan interest rateFloat
    loan_percent_incomeLoan amount as a percentage of annual incomeFloat
    cb_person_cred_hist_lengthLength of credit history in yearsFloat
    credit_scoreCredit score of the personInteger
    previous_loan_defaults_on_fileIndicator of previous loan defaultsCategorical
    loan_status (target variable)Loan approval status: 1 = approved; 0 = rejectedInteger

    3. Data Usage

    The dataset can be used for multiple purposes:

    • Exploratory Data Analysis (EDA): Analyze key features, distribution patterns, and relationships to understand credit risk factors.
    • Classification: Build predictive models to classify the loan_status variable (approved/not approved) for potential applicants.
    • Regression: Develop regression models to predict the credit_score variable based on individual and loan-related attributes.

    Mind the data issue from the original data, such as the instance > 100-year-old as age.

    This dataset provides a rich basis for understanding financial risk factors and simulating predictive modeling processes for loan approval and credit scoring.

    Feel free to leave comments on the discussion. I'd appreciate your upvote if you find my dataset useful! 😀

  3. d

    State of New York Mortgage Agency (SONYMA) Target Areas by Census Tract

    • catalog.data.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +3more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). State of New York Mortgage Agency (SONYMA) Target Areas by Census Tract [Dataset]. https://catalog.data.gov/dataset/state-of-new-york-mortgage-agency-sonyma-target-areas-by-census-tract
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.ny.gov
    Area covered
    New York
    Description

    Listing of SONYMA target areas by US Census Bureau Census Tract or Block Numbering Area (BNA). The State of New York Mortgage Agency (SONYMA) targets specific areas designated as ‘areas of chronic economic distress’ for its homeownership lending programs. Each state designates ‘areas of chronic economic distress’ with the approval of the US Secretary of Housing and Urban Development (HUD). SONYMA identifies its target areas using US Census Bureau census tracts and block numbering areas. Both census tracts and block numbering areas subdivide individual counties. SONYMA also relates each of its single-family mortgages to a specific census tract or block numbering area. New York State identifies ‘areas of chronic economic distress’ using census tract numbers. 26 US Code § 143 (current through Pub. L. 114-38) defines the criteria that the Secretary of Housing and Urban Development uses in approving designations of ‘areas of chronic economic distress’ as: i) the condition of the housing stock, including the age of the housing and the number of abandoned and substandard residential units, (ii) the need of area residents for owner-financing under this section, as indicated by low per capita income, a high percentage of families in poverty, a high number of welfare recipients, and high unemployment rates, (iii) the potential for use of owner-financing under this section to improve housing conditions in the area, and (iv) the existence of a housing assistance plan which provides a displacement program and a public improvements and services program. The US Census Bureau’s decennial census last took place in 2010 and will take place again in 2020. While the state designates ‘areas of chronic economic distress,’ the US Department of Housing and Urban Development must approve the designation. The designation takes place after the decennial census.

  4. Credit_Risk_Analysis

    • kaggle.com
    Updated Aug 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nandita Pore (2023). Credit_Risk_Analysis [Dataset]. https://www.kaggle.com/datasets/nanditapore/credit-risk-analysis/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 28, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Nandita Pore
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Description: Welcome to the "Loan Applicant Data for Credit Risk Analysis" dataset on Kaggle! This dataset provides essential information about loan applicants and their characteristics. Your task is to develop predictive models to determine the likelihood of loan default based on these simplified features.

    In today's financial landscape, assessing credit risk is crucial for lenders and financial institutions. This dataset offers a simplified view of the factors that contribute to credit risk, making it an excellent opportunity for data scientists to apply their skills in machine learning and predictive modeling.

    Column Descriptions:

    • ID: Unique identifier for each loan applicant.
    • Age: Age of the loan applicant.
    • Income: Income of the loan applicant.
    • Home: Home ownership status (Own, Mortgage, Rent).
    • Emp_Length: Employment length in years.
    • Intent: Purpose of the loan (e.g., education, home improvement).
    • Amount: Loan amount applied for.
    • Rate: Interest rate on the loan.
    • Status: Loan approval status (Fully Paid, Charged Off, Current).
    • Percent_Income: Loan amount as a percentage of income.
    • Default: Whether the applicant has defaulted on a loan previously (Yes, No).
    • Cred_Length: Length of the applicant's credit history.

    Explore this dataset, preprocess the data as needed, and develop machine learning models, especially using Random Forest, to predict loan default. Your insights and solutions could contribute to better credit risk assessment methods and potentially help lenders make more informed decisions.

    Remember to respect data privacy and ethics guidelines while working with this data. Good luck, and happy analyzing!

  5. A

    ‘State of New York Mortgage Agency (SONYMA) Target Areas by Census Tract’...

    • analyst-2.ai
    Updated Feb 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2001). ‘State of New York Mortgage Agency (SONYMA) Target Areas by Census Tract’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-state-of-new-york-mortgage-agency-sonyma-target-areas-by-census-tract-481f/96e275b6/?iid=002-264&v=presentation
    Explore at:
    Dataset updated
    Feb 1, 2001
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    Analysis of ‘State of New York Mortgage Agency (SONYMA) Target Areas by Census Tract’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/54c83793-f5bc-4411-93f6-15a5761c6cdb on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    Listing of SONYMA target areas by US Census Bureau Census Tract or Block Numbering Area (BNA). The State of New York Mortgage Agency (SONYMA) targets specific areas designated as ‘areas of chronic economic distress’ for its homeownership lending programs. Each state designates ‘areas of chronic economic distress’ with the approval of the US Secretary of Housing and Urban Development (HUD). SONYMA identifies its target areas using US Census Bureau census tracts and block numbering areas. Both census tracts and block numbering areas subdivide individual counties. SONYMA also relates each of its single-family mortgages to a specific census tract or block numbering area. New York State identifies ‘areas of chronic economic distress’ using census tract numbers. 26 US Code § 143 (current through Pub. L. 114-38) defines the criteria that the Secretary of Housing and Urban Development uses in approving designations of ‘areas of chronic economic distress’ as: i) the condition of the housing stock, including the age of the housing and the number of abandoned and substandard residential units, (ii) the need of area residents for owner-financing under this section, as indicated by low per capita income, a high percentage of families in poverty, a high number of welfare recipients, and high unemployment rates, (iii) the potential for use of owner-financing under this section to improve housing conditions in the area, and (iv) the existence of a housing assistance plan which provides a displacement program and a public improvements and services program. The US Census Bureau’s decennial census last took place in 2010 and will take place again in 2020. While the state designates ‘areas of chronic economic distress,’ the US Department of Housing and Urban Development must approve the designation. The designation takes place after the decennial census.

    --- Original source retains full ownership of the source dataset ---

  6. bank_loan_data

    • kaggle.com
    Updated Feb 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Uday Malviya (2025). bank_loan_data [Dataset]. http://doi.org/10.34740/kaggle/dsv/10791226
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Uday Malviya
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Overview This dataset contains 45,000 records of loan applicants, with various attributes related to personal demographics, financial status, and loan details. The dataset can be used for predictive modeling, particularly in credit risk assessment and loan default prediction.

    Dataset Content The dataset includes 14 columns representing different factors influencing loan approvals and defaults:

    Personal Information

    person_age: Age of the applicant (in years). person_gender: Gender of the applicant (male, female). person_education: Educational background (High School, Bachelor, Master, etc.). person_income: Annual income of the applicant (in USD). person_emp_exp: Years of employment experience. person_home_ownership: Type of home ownership (RENT, OWN, MORTGAGE). Loan Details

    loan_amnt: Loan amount requested (in USD). loan_intent: Purpose of the loan (PERSONAL, EDUCATION, MEDICAL, etc.). loan_int_rate: Interest rate on the loan (percentage). loan_percent_income: Ratio of loan amount to income. Credit & Loan History

    cb_person_cred_hist_length: Length of the applicant's credit history (in years). credit_score: Credit score of the applicant. previous_loan_defaults_on_file: Whether the applicant has previous loan defaults (Yes or No). Target Variable

    loan_status: 1 if the loan was repaid successfully, 0 if the applicant defaulted. Use Cases Loan Default Prediction: Build a classification model to predict loan repayment. Credit Risk Analysis: Analyze the relationship between income, credit score, and loan defaults. Feature Engineering: Extract new insights from employment history, home ownership, and loan amounts. Acknowledgments This dataset is synthetic and designed for machine learning and financial risk analysis.

  7. Monthly property transactions completed in the UK with value of £40,000 or...

    • gov.uk
    • s3.amazonaws.com
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Revenue & Customs (2025). Monthly property transactions completed in the UK with value of £40,000 or above [Dataset]. https://www.gov.uk/government/statistics/monthly-property-transactions-completed-in-the-uk-with-value-40000-or-above
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Revenue & Customs
    Area covered
    United Kingdom
    Description

    These National Statistics provide monthly estimates of the number of residential and non-residential property transactions in the UK and its constituent countries. National Statistics are accredited official statistics.

    England and Northern Ireland statistics are based on information submitted to the HM Revenue and Customs (HMRC) Stamp Duty Land Tax (SDLT) database by taxpayers on SDLT returns.

    Land and Buildings Transaction Tax (LBTT) replaced SDLT in Scotland from 1 April 2015 and this data is provided to HMRC by https://www.revenue.scot/" class="govuk-link">Revenue Scotland to continue the time series.

    Land Transaction Tax (LTT) replaced SDLT in Wales from 1 April 2018. To continue the time series, the https://gov.wales/welsh-revenue-authority" class="govuk-link">Welsh Revenue Authority (WRA) have provided HMRC with a monthly data feed of LTT transactions since July 2021.

    LTT figures for the latest month are estimated using a grossing factor based on data for the most recent and complete financial year. Until June 2021, LTT transactions for the latest month were estimated by HMRC based upon year on year growth in line with other UK nations.

    LTT transactions up to the penultimate month are aligned with LTT statistics.

    Go to Stamp Duty Land Tax guidance for the latest rates and information.

    Go to Stamp Duty Land Tax rates from 1 December 2003 to 22 September 2022 and Stamp Duty: rates on land transfers before December 2003 for historic rates.

    Quality report

    Further details for this statistical release, including data suitability and coverage, are included within the ‘Monthly property transactions completed in the UK with value of £40,000 or above’ quality report.

    The latest release was published 09:30 31 July 2025 and was updated with provisional data from completed transactions during June 2025.

    The next release will be published 09:30 29 August 2025 and will be updated with provisional data from completed transactions during July 2025.

    https://webarchive.nationalarchives.gov.uk/ukgwa/20240320184933/https://www.gov.uk/government/statistics/monthly-property-transactions-completed-in-the-uk-with-value-40000-or-above" class="govuk-link">Archive versions of the Monthly property transactions completed in the UK with value of £40,000 or above are available via the UK Government Web Archive, from the National Archives.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Homeownership Rate in the United States [Dataset]. https://fred.stlouisfed.org/series/RHORUSQ156N

Homeownership Rate in the United States

RHORUSQ156N

Explore at:
59 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Jul 28, 2025
License

https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

Area covered
United States
Description

Graph and download economic data for Homeownership Rate in the United States (RHORUSQ156N) from Q1 1965 to Q2 2025 about homeownership, housing, rate, and USA.

Search
Clear search
Close search
Google apps
Main menu