Facebook
TwitterIn 2023, about 39.47 percent of all family households in the United States had their own children under age 18 living in the household. This is compared to the approximate 48.5 percent of female-led households with their own children under 18.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Total Families with Children under 18 Years Old (TTLFMCU) from 1950 to 2024 about 18 years +, family, child, household survey, and USA.
Facebook
TwitterIn 2023, about **** million family households in the United States had their own children between three and five years of age living in the household. In that same year, almost ** million U.S. family households were living with their own children aged 12 to 17 years old.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Total Families with Children under 18 Years Old with Married Couple (FMLWCUMC) from 1950 to 2024 about married, 18 years +, family, child, household survey, and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Poverty Status of Families by Type of Family: All Families With and Without Children Under 18 Years ,Below Poverty Threshold (HSTPOVARWWCU18YAFBPP) from 1959 to 2024 about under 18 years, family, child, poverty, percent, and USA.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: Own children are never-married sons and daughters under the age of 18, including stepchildren and adopted children, of the householder or married couple.
This indicator provides the number of households with own children under the age of 18 along with the percentage of these that are single parent households. The percentages are of households with children under 18 years of age, not out of all housing units. Further, it specifies the percentages of households with children under 18 years of age that are single parent father or single parent mother households. Therefore, sum of single father household and single mother households will add to percent of single parent household with own children under 18.
Source: U.S. Census Bureau; 2013-2017 American Community Survey 5-Year Estimates, Table S1101.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
TwitterIn 2024, 34.59 percent of all households in the United States were two person households. In 1970, this figure was at 28.92 percent. Single households Single mother households are usually the most common households with children under 18 years old found in the United States. As of 2021, the District of Columbia and North Dakota had the highest share of single-person households in the United States. Household size in the United States has decreased over the past century, due to customs and traditions changing. Families are typically more nuclear, whereas in the past, multigenerational households were more common. Furthermore, fertility rates have also decreased, meaning that women do not have as many children as they used to. Average households in Utah Out of all states in the U.S., Utah was reported to have the largest average household size. This predominately Mormon state has about three million inhabitants. The Church of the Latter-Day Saints, or Mormonism, plays a large role in Utah, and can contribute to the high birth rate and household size in Utah. The Church of Latter-Day Saints promotes having many children and tight-knit families. Furthermore, Utah has a relatively young population, due to Mormons typically marrying and starting large families younger than those in other states.
Facebook
TwitterFamilies of tax filers; Census families with children by age of children and children by age groups (final T1 Family File; T1FF).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single-parent Families reports the percent of families with children that are headed by a single parent, per race/ethnicity of the householder. Dimensions Year;Measure.Type;Variable Full Description Children are all persons under the age of 18 years, living in families, and related as children by birth, marriage, or adoption to the householder. Children living with married step-parents are not included. Single-parent families may include unmarried couples. This data originates from the American Community Survey (ACS) 5-Year estimates, table B11003. The ACS collects these data from a sample of households on a rolling monthly basis. ACS aggregates samples into one-, three-, or five-year periods. At this time only state-level annual data are available on CTdata.org. Town-level data aggregated from the five-year datasets (considered to be more accurate for geographic areas that are the size of a county or smaller) can be produced using Census tables currently available on the Census website.
Facebook
TwitterThis graph shows the percentage of husband-wife households with own children under 18 years, living in the household, in the U.S. in 2018, by state. In 2018, about 60.96 percent of Californian husband-wife households had children under the age of 18 living within the household.
Facebook
Twitter"Enrollment counts are based on the October 31 Audited Register for the 2017-18 to 2019-20 school years. To account for the delay in the start of the school year, enrollment counts are based on the November 13 Audited Register for 2020-21 and the November 12 Audited Register for 2021-22. * Please note that October 31 (and November 12-13) enrollment is not audited for charter schools or Pre-K Early Education Centers (NYCEECs). Charter schools are required to submit enrollment as of BEDS Day, the first Wednesday in October, to the New York State Department of Education." Enrollment counts in the Demographic Snapshot will likely exceed operational enrollment counts due to the fact that long-term absence (LTA) students are excluded for funding purposes. Data on students with disabilities, English Language Learners, students' povery status, and students' Economic Need Value are as of the June 30 for each school year except in 2021-22. Data on SWDs, ELLs, Poverty, and ENI in the 2021-22 school year are as of March 7, 2022. 3-K and Pre-K enrollment totals include students in both full-day and half-day programs. Four-year-old students enrolled in Family Childcare Centers are categorized as 3K students for the purposes of this report. All schools listed are as of the 2021-22 school year. Schools closed before 2021-22 are not included in the school level tab but are included in the data for citywide, borough, and district. Programs and Pre-K NYC Early Education Centers (NYCEECs) are not included on the school-level tab. Due to missing demographic information in rare cases at the time of the enrollment snapshot, demographic categories do not always add up to citywide totals. Students with disabilities are defined as any child receiving an Individualized Education Program (IEP) as of the end of the school year (or March 7 for 2021-22). NYC DOE "Poverty" counts are based on the number of students with families who have qualified for free or reduced price lunch, or are eligible for Human Resources Administration (HRA) benefits. In previous years, the poverty indicator also included students enrolled in a Universal Meal School (USM), where all students automatically qualified, with the exception of middle schools, D75 schools and Pre-K centers. In 2017-18, all students in NYC schools became eligible for free lunch. In order to better reflect free and reduced price lunch status, the poverty indicator does not include student USM status, and retroactively applies this rule to previous years. "The school’s Economic Need Index is the average of its students’ Economic Need Values. The Economic Need Index (ENI) estimates the percentage of students facing economic hardship. The 2014-15 school year is the first year we provide ENI estimates. The metric is calculated as follows: * The student’s Economic Need Value is 1.0 if: o The student is eligible for public assistance from the NYC Human Resources Administration (HRA); o The student lived in temporary housing in the past four years; or o The student is in high school, has a home language other than English, and entered the NYC DOE for the first time within the last four years. * Otherwise, the student’s Economic Need Value is based on the percentage of families (with school-age children) in the student’s census tract whose income is below the poverty level, as estimated by the American Community Survey 5-Year estimate (2020 ACS estimates were used in calculations for 2021-22 ENI). The student’s Economic Need Value equals this percentage divided by 100. Due to differences in the timing of when student demographic, address and census data were pulled, ENI values may vary, slightly, from the ENI values reported in the School Quality Reports. In previous years, student census tract data was based on students’ addresses at the time of ENI calculation. Beginning in 2018-19, census tract data is based on students’ addresses as of the Audited Register date of the g
Facebook
TwitterThe average American family in 2023 consisted of 3.15 persons. Families in the United States According to the U.S. Census Bureau, a family is a group of two people or more (one of whom is the householder) related by birth, marriage, or adoption and residing together; all such people (including related subfamily members) are considered as members of one family. As of 2023, the U.S. Census Bureau counted about 84.33 million families in the United States. The average family consisted of 3.15 persons in 2021, down from 3.7 in the 1960s. This is reflected in the decrease of children in family households overall. In 1970, about 56 percent of all family households had children under the age of 18 living in the household. This percentage declined to about 40 percent in 2020. The average size of a family household varies greatly from state to state. The largest average families can be found in Utah, California, and Hawaii, while the smallest families can be found in Wisconsin, Vermont and Maine.
Facebook
TwitterThe primary objective of the 2017-18 Jordan Population and Family Health Survey (JPFHS) is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2017-18 JPFHS: - Collected data at the national level that allowed calculation of key demographic indicators - Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality - Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunisation coverage among children, the prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery among ever-married women - Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and ever-married women age 15-49 - Conducted haemoglobin testing on children age 6-59 months and ever-married women age 15-49 to provide information on the prevalence of anaemia among these groups - Collected data on knowledge and attitudes of ever-married women and men about sexually transmitted infections (STIs) and HIV/AIDS - Obtained data on ever-married women’s experience of emotional, physical, and sexual violence - Obtained data on household health expenditures
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2017-18 JPFHS is based on Jordan's Population and Housing Census (JPHC) frame for 2015. The current survey is designed to produce results representative of the country as a whole, of urban and rural areas separately, of three regions, of 12 administrative governorates, and of three national groups: Jordanians, Syrians, and a group combined from various other nationalities.
The sample for the 2017-18 JPFHS is a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. Each of the Syrian camps in the governorates of Zarqa and Mafraq formed its own sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a two-stage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and sub-district within each sampling stratum. By using a probability-proportional-to-size selection for the first stage of selection, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.
In the first stage, 970 clusters were selected with probability proportional to cluster size, with the cluster size being the number of residential households enumerated in the 2015 JPHC. The sample allocation took into account the precision consideration at the governorate level and at the level of each of the three special domains. After selection of PSUs and clusters, a household listing operation was carried out in all selected clusters. The resulting household lists served as the sampling frame for selecting households in the second stage. A fixed number of 20 households per cluster were selected with an equal probability systematic selection from the newly created household listing.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Four questionnaires were used for the 2017-18 JPFHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect population and health issues relevant to Jordan. After all questionnaires were finalised in English, they were translated into Arabic.
All electronic data files for the 2017-18 JPFHS were transferred via IFSS to the DOS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in October 2017 and completed in February 2018.
A total of 19,384 households were selected for the sample, of which 19,136 were found to be occupied at the time of the fieldwork. Of the occupied households, 18,802 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 14,870 women were identified as eligible for an individual interview; interviews were completed with 14,689 women, yielding a response rate of 99%. A total of 6,640 eligible men were identified in the sampled households and 6,429 were successfully interviewed, yielding a response rate of 97%. Response rates for both women and men were similar across urban and rural areas.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Jordan Population and Family Health Survey (JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 JPFHS sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programmes developed by ICF International. These programmes use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
The Taylor linearisation method treats any percentage or average as a ratio estimate, r = y/x, where y represents the total sample value for variable y, and x represents the total number of cases in the group or subgroup under consideration.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix C of the survey final report.
Facebook
TwitterData SourcesAmerican Community Survey (ACS):Conducted by: U.S. Census BureauDescription: The ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.Content: The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.Frequency: The ACS offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.Purpose: ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP)Utilized by: CDCDescription: The SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.Content: SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes. Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.Purpose: SVI data provides insights into the social vulnerability of communities at both the tract and county levels, helping public health officials and emergency response planners allocate resources effectively.Utilization and IntegrationBy integrating data from both the ACS and the SVI, this dataset enables an in-depth analysis and understanding of various socio-economic and demographic indicators at the census tract level. This integrated data is valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States.ApplicationsPolicy Development: Helps policymakers develop targeted interventions to address the needs of vulnerable populations.Resource Allocation: Assists emergency response planners in allocating resources more effectively based on community vulnerability.Research: Provides a robust foundation for academic and applied research in socio-economic and demographic studies.Community Planning: Aids in the planning and development of community programs and initiatives aimed at improving living conditions and reducing vulnerabilities.Note: Due to limitations in the ArcGIS Pro environment, the data variable names may be truncated. Refer to the provided table for a clear understanding of the variables.CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2013-2017 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2013-2017 ACSEP_PCIEP_PCIPer capita income estimate, 2013-2017 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2013-2017 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2013-2017 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2013-2017 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2013-2017 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2013-2017 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computer
Facebook
Twitterwe utilized data from two main sources: the United States Census Bureau's American Community Survey (ACS) and the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry (CDC/ATSDR) Social Vulnerability Index (SVI).American Community Survey (ACS):Conducted by the U.S. Census Bureau, the ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.It offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.The ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by ATSDR’s Geospatial Research, Analysis & Services Program (GRASP) and utilized by the CDC, the SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themesEach tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.SVI data provides insights into the social vulnerability of communities at both the tract and county levels, helping public health officials and emergency response planners allocate resources effectively. In our utilization of these sources, we likely integrated data from both the ACS and the SVI to analyze and understand various socio-economic and demographic indicators at the state, county, and possibly tract levels. This integrated data would have been valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United StatesNote: Due to limitations in the ArcGIS Pro environment, the data variable names may be truncated. Refer to the provided table for a clear understanding of the variables.CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2014-2018 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2015-2019 ACSEP_PCIEP_PCIPer capita income estimate, 2015-2019 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2015-2019 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2015-2019 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2015-2019 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2015-2019 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computerThis table provides a mapping between the CSV variable names and the shapefile variable names, along with a brief description of each variable.
Facebook
TwitterShare of single parents with children under 18 years of age in households with children under 18 years in percent on 31.12.2014(MSS 2015, PLR, context indicator: K 02), map with equidistan group formation
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The key indicator reports the number of children under the age of 18, none of whose parents has an income from work, to the total number of children under the age of 18, as at 31 December. As soon as a parent is “occupied” according to the socio-economic classification, the child is considered to be living in a household with income from work. Children from households for which it is not known whether there is income from work (no working parent and socio-economic position of one or both parents = “other”) are not taken into account in the calculation (approximately 10% of the under-18s known to the BCSS). People who are not known to the Belgian social security (e.g.: diplomats and outgoing cross-border workers) fall into the "other" category. See also: - The nomenclature of socio-economic positions on the website of the Crossroads Bank for Social Security "\2".
Facebook
TwitterThis first Child Activity Survey (CAS) rectifies the absence of statistical information on working children and their activities in Belize. It follows Belize's commitment to international instruments concerning child labour, such as the UN Convention on the Rights of the Child (CRC) and International Labour Organization (ILO) Conventions, and concern by the Government of Belize at educational indicators of inadequate rates of school enrolment, participation and completion.
The CAS was conducted by the Central Statistical Office in April-May 2001 (postponed from October 2000 due to Hurricane Keith) and aims to provide national information to assist the Government in identifying appropriate responses. Such responses may include policies and programmes to ensure protective measures to minimize the negative consequences of child labour as well as supportive measures to encourage and enable improved education participation by Belizean young people.
The data from the CAS will also be used for: • In-depth analysis and research, for example, in-depth analysis of child labour and education in Belize; • Decision-making and planning, for example, designing protective measures; • Formulation and implementation of policies, programmes and projects, for example, implementing protective measures to minimise the negative consequences of child labour and protection of working children in the short-term and the eventual elimination of the practice in the long-run; and • Monitoring and refining these policies and programmes.
National
Children aged 5-17 years
The survey covered all de jure children (usual residents) aged between 5-17 years.
Sample survey data [ssd]
Administratively, Belize is divided into six districts, namely Corozal and Orange Walk in the north, Belize to the east, Cayo to the west and Stann Creek and Toledo in the south. Each of these districts has distinct urban and rural demarcation. Overall, about 52% of the households in the country are located in the rural areas. Two districts, namely Cayo (which contains the capital Belmopan City), and Belize (which contains the largest urban centre, Belize City), account for almost half the households in the country (CSO, 2001 a).
For the purpose of the Population and Housing Census, each district is sub-divided into smaller Enumeration Districts (EDs). Each ED has an average size of 144 households (Census 2000). For the sampling design of the CAS, available data from both the 1991 and 2000 Censuses were utilised (Tables 2-3 and 2-4). During the time of the preparation of the sample design, the Census 2000 data were not yet computerised and the only available data for 2000 were for household by district and ED and for population by sex, district and ED.
The survey comprised a two-stage design with the selection of EDs being the first stage: the selection of EDs being proportional to the size of EDs, that is, the number of households at the time of the Census 2000. The second stage was the random selection of a cluster of households from within selected EDs. Each district was treated as a stratum in its own right. However, in each case the selected ED and cluster were such that
f = f1 x f2 where f1 is the probability of selecting an ED, f2 is the probability of selecting a cluster, and f is the probability of selecting a household.
To randomly select the 6,058 households, it was necessary to first obtain a distribution of the population 5 to 17 years by district, based on the 1991 Census (Table 2-3). From the data it was also possible to obtain the average number of persons 5 to 17 years per household by district. The 1991 Census also provided data on household income, which were used for ordering EDs within districts prior to selection.
Data on the number of households in each ED were available from the 2000 Population and Housing Census (Table 2-4). These data, together with data on the average number of persons 5 to 17 years per household from the 1991 Census, were used to allocate the number of households to be selected from each district and the urban and rural areas within each district.
Using an average cluster size of 30 households, which gives approximately 200 clusters to yield the 6,058 households and about the same number of EDs, each district was assigned a number of clusters based on the number of households obtained from the Census 2000. After examining the available income data, a monthly household income of BZ$5002 was used as the criterion for ordering the EDs before selection. The EDs were ranked by proportion of households earning less than BZ$500 per month from the highest to the lowest proportion. This was done within each urban and rural area within each district. Within each district, a number of EDs were systematically selected. The selection interval was determined by the number of households in the district and the number of clusters assigned to the district.
After selecting these EDs, one cluster was then selected from each ED. Dividing the number of households by 30 and rounding off as necessary gave the number of clusters assigned to an ED. However, the sum of clusters from the EDs did not exceed the number of clusters assigned to the district. Because the number of households in an ED was not exactly divisible by 30 and the number of clusters assigned to an ED must be an integer, meant that the cluster sizes varied from 27 to 35 households with an average of about 30 households. For example, an ED with 128 households would have been assigned four clusters, each with an average size of 32 households.
Based on the average number of persons aged 5 to 17 years per household from the 1991 Census data, it was estimated that the number of persons aged 5 to 17 years to be interviewed from the sample would be just over 10,000 (the actual number interviewed for the survey was 7,870 children.). An estimated 20% to 25% employment rate for children 5 to 17 years old should have yielded 2,000 to 2,500 employed persons in the sample (the results from the survey showed 896 employed children). Selection of the sample was made at the CSO using the households from the 2000 Population and Housing Census as the sample frame.
Face-to-face [f2f]
The questionnaire used for the CAS was designed to gather detailed information specifically on children aged between 5 and 17 years inclusive, and basic demographic information for the parent or guardian of the child and, in the absence of the parent or guardian, a responsible adult over 17 years (Figure 2-1). According to the Convention on the Rights of the Child (CRC), a child is any person under the age of 18 years; hence the upper age limit for the target population is 17 years. Given that the compulsory school age in Belize is 5 to 14 years, five years was used as the lower age limit. All children 5 to 17 years in the households selected were interviewed.
The questionnaire (refer to Figure 2-1 and Annex III) was divided into 11 sections: Section I: Housing Section II: Migration status of households Section III: All children 5-17 years old living away from this household Section IV: Respondent characteristics Section V: Characteristics of the child 5-17 years old Section VI: Migration status of the child Section VII: Usual economic activity of the child Section VIII: Non economic activity and complete idleness Section IX: Health and safety aspects of child who has worked at any time in the past Section X: Perception of parent or guardian of the child Section XI: For the child 5 to 17 years old.
Unlike Section XI, the respondent for Sections I to X was the parent or guardian (or responsible adult, in the absence of the parent or guardian) of any of the children 5 to 17 years old in the household. The person who answered Sections I to X expressed his or her views and knowledge about the housing and household characteristics and provided information on each child 5 to 17 years old who was a member of the household. For every additional child, interviews were repeated for Sections V to XI.
Most respondents (84.3%) for Sections I to X were the parent or guardian of the child. The grandparent (6.5%), the brother or sister (3.9%) and other relative (3.7%) were the other most likely respondents. Interestingly, 0.5% of children had their spouse or partner answering as the responsible adult in their household. Note that if the child’s spouse or partner was under 18 years, the spouse or partner was still considered a child.
Each child 5 to 17 years old responded to Section XI. Screening questions were included in this section of the questionnaire to help determine if the child interviewed was economically active, not economically active or idle, and then specific questions were asked depending upon the working status of the child.
More than 70% of the children interviewed were accompanied either by the parent or guardian or another member of the household. The rest of the children were alone when they were interviewed. A total of 44 children (0.6% of all children in the sample) did not answer Section XI but had information on them in Sections I to X.
The interviewers first checked the questionnaires before submitting them to the field supervisors, who then did a second check of the questionnaires. The field supervisor then submitted the questionnaires to the editor/coders, who then edited and coded the questionnaires. The district supervisors and personnel from the main office did random editing of questionnaires. After the questionnaires were both
Facebook
TwitterIn 2023, about 39.47 percent of all family households in the United States had their own children under age 18 living in the household. This is compared to the approximate 48.5 percent of female-led households with their own children under 18.