39 datasets found
  1. Share of income spent on basic essentials in the EU 1950-1990s

    • statista.com
    Updated Jan 1, 2007
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2007). Share of income spent on basic essentials in the EU 1950-1990s [Dataset]. https://www.statista.com/statistics/1073153/share-income-spent-basics-eu-1950-1990s/
    Explore at:
    Dataset updated
    Jan 1, 2007
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    European Union
    Description

    A major characteristic of life in Western Europe in the second half of the 20th century was the emergence of consumerism. For the generations who had endured the devastation of two world wars, the economic difficulties that accompanied these and the Great Depression, and widespread food shortages across these five decades, the opportunity to spend their newfound income was embraced. In 1950, at the end of the recovery period after the Second World War, almost two-thirds of all income in Western Europe's* most-developed nations was spent on basic essentials, such as food and clothing. While economic recovery ended for most countries by the early 1950s, rapid economic growth did not stop there. Throughout the 1960s and 1970s, household income increased by around three percent per year in the most developed countries and five percent per year across Southern Europe. Food spending In Britain, France, and Germany, the share of income spent on food in 1950 was around 44 percent; this dropped to about 27 percent in 1971, and 13 percent in the 1990s. There were some regional variations, specifically the slower rate of this transition in the south, as 34 and 52 percent of income was spent on food in Spain and Portugal, respectively, in 1971. Clothing spending In Europe's 15 most-developed countries, approximately 16 percent of income was spent on clothing in 1950, but this dropped below seven percent by 1996. This was not only because income rose over this period, but also as quality improved due to advances in manufacturing and synthetic materials, and as clothing became more affordable as much of the production was relocated from Europe to China, Turkey, and other parts of East Asia.

  2. Share of monthly household expenditures spent on food products in France...

    • statista.com
    Updated Aug 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of monthly household expenditures spent on food products in France 2018-2025 [Dataset]. https://www.statista.com/statistics/1211764/share-monthly-household-expenditures-spent-food-products-france/
    Explore at:
    Dataset updated
    Aug 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2018 - Mar 2025
    Area covered
    France
    Description

    Household expenditures on consumer goods appeared to generally be quite stable between June 2018 and February 2020 across all categories. There was, however, a significant change in March 2020 caused by the lockdown implemented by French authorities in response to the coronavirus (COVID-19) crisis. While spending on manufactured goods dropped considerably that month, food expenses increased slightly. At the same time, the share of monthly household expenditure dedicated to food products strongly increased, and represented more than half of household expenditure on consumer goods in April 2020. However, this share had decreased by March 2025, reaching 36.12 percent.

  3. Budget Share of Food for Spanish Households

    • kaggle.com
    Updated Jul 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utkarsh Singh (2023). Budget Share of Food for Spanish Households [Dataset]. https://www.kaggle.com/datasets/utkarshx27/budget-share-of-food-for-spanish-households
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 2, 2023
    Dataset provided by
    Kaggle
    Authors
    Utkarsh Singh
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description
    number of observations : 23972
    observation : households
    country : Spain
    
    ColumnDescription
    wfoodpercentage of total expenditure which the household has spent on food
    totexptotal expenditure of the household
    ageage of reference person in the household
    sizesize of the household
    townsize of the town where the household is placed categorized into 5 groups: 1 for small towns, 5 for big ones
    sexsex of reference person (man,woman)

    References Journal of Applied Econometrics data archive : http://qed.econ.queensu.ca/jae/.

  4. E

    Global Food Expenditure 2012

    • dtechtive.com
    • find.data.gov.scot
    xml, zip
    Updated Feb 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh (2017). Global Food Expenditure 2012 [Dataset]. http://doi.org/10.7488/ds/1962
    Explore at:
    xml(0.0042 MB), zip(14.24 MB)Available download formats
    Dataset updated
    Feb 22, 2017
    Dataset provided by
    University of Edinburgh
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This dataset shows the expenditure on food and drink by country. Information is given on expenditure as a percentage of total income and in dollars. what you can see from the data is areas where upto 50% of total household expenditure is devoted to food. These areas tend to be poorer developing nations in Africa. The developed countries spend less, as a percentage, on food, but obviously much more in terms of actual dollars. The data was sourced from the USDA Economic Research Service (http://www.ers.usda.gov/) and there is an interesting article here (http://www.vox.com/2014/7/6/5874499/map-heres-how-much-every-country-spends-on-food). The data was a flat excel document and has been linked to geographical boundaries in ArcGIS in order to display the data as map. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2014-07-08 and migrated to Edinburgh DataShare on 2017-02-22.

  5. Money spent on food and drinks during Ramadan Asia 2022, by country

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Money spent on food and drinks during Ramadan Asia 2022, by country [Dataset]. https://www.statista.com/statistics/1326916/asia-expenditure-on-food-and-drink-on-ramadan-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 25, 2022 - Mar 6, 2022
    Area covered
    Asia
    Description

    According to a survey conducted in selected Asian countries in February and March 2022, 43 percent of all Muslim respondents answered that they will be spending more money on food and drinks during Ramadan compared to the previous year. The share was the highest for the Muslim respondents in India, valuing to 64 percent. In comparison, 10 percent of respondents in India answered that they will be spending less on food and drinks during Ramadan in 2022.

  6. a

    Location Affordability Index

    • hub.arcgis.com
    • hub-lincolninstitute.hub.arcgis.com
    • +6more
    Updated May 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Location Affordability Index [Dataset]. https://hub.arcgis.com/maps/447a461f048845979f30a2478b9e65bb
    Explore at:
    Dataset updated
    May 10, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    There is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**

    Title: Location Affordability Index - NMCDC Copy

    Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.

    Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.

    Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC

    Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.

    Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb

    UID: 73

    Data Requested: Family income spent on basic need

    Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id

    Date Acquired: Map copied on May 10, 2022

    Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6

    Tags: PENDING

  7. P

    Philippines Percentage to Total Expenditure (PTE): Food Expenditure (FE)

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Philippines Percentage to Total Expenditure (PTE): Food Expenditure (FE) [Dataset]. https://www.ceicdata.com/en/philippines/family-income-and-expenditure-survey-percentage-distribution-of-family-expenditure-by-income-class/percentage-to-total-expenditure-pte-food-expenditure-fe
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1997 - Dec 1, 2015
    Area covered
    Philippines
    Variables measured
    Household Income and Expenditure Survey
    Description

    Philippines Percentage to Total Expenditure (PTE): Food Expenditure (FE) data was reported at 41.900 % in 2015. This records a decrease from the previous number of 42.800 % for 2012. Philippines Percentage to Total Expenditure (PTE): Food Expenditure (FE) data is updated yearly, averaging 42.800 % from Dec 1997 (Median) to 2015, with 7 observations. The data reached an all-time high of 44.200 % in 1997 and a record low of 41.400 % in 2006. Philippines Percentage to Total Expenditure (PTE): Food Expenditure (FE) data remains active status in CEIC and is reported by Philippine Statistics Authority. The data is categorized under Global Database’s Philippines – Table PH.H026: Family Income and Expenditure Survey: Percentage Distribution of Family Expenditure: By Income Class.

  8. Regional Cost of Living Analysis

    • kaggle.com
    zip
    Updated Nov 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heidar Mirhaji Sadati (2024). Regional Cost of Living Analysis [Dataset]. https://www.kaggle.com/datasets/heidarmirhajisadati/regional-cost-of-living-analysis/code
    Explore at:
    zip(13731 bytes)Available download formats
    Dataset updated
    Nov 30, 2024
    Authors
    Heidar Mirhaji Sadati
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset provides insights into the cost of living and average monthly income across various countries and regions worldwide from 2000 to 2023. It includes critical economic indicators such as housing costs, taxes, healthcare, education, transportation expenses, and savings rates. The data is ideal for analyzing economic trends, regional comparisons, and financial planning.

    Column Descriptions: Country: The name of the country where the data was recorded. Region: The geographical region to which the country belongs (e.g., Asia, Europe). Year: The year when the data was recorded. Average_Monthly_Income: The average monthly income of individuals in USD. Cost_of_Living: The average monthly cost of living in USD, including essentials like housing, food, and utilities. Housing_Cost_Percentage: The percentage of income spent on housing expenses. Tax_Rate: The average tax rate applied to individuals' income, expressed as a percentage. Savings_Percentage: The portion of income saved monthly, expressed as a percentage. Healthcare_Cost_Percentage: The percentage of income spent on healthcare services. Education_Cost_Percentage: The percentage of income allocated to educational expenses. Transportation_Cost_Percentage: The percentage of income spent on transportation costs.

  9. p

    Household Income and Expenditure Survey 2013-2014 - Palau

    • microdata.pacificdata.org
    Updated Mar 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning and Statistics (2020). Household Income and Expenditure Survey 2013-2014 - Palau [Dataset]. https://microdata.pacificdata.org/index.php/catalog/740
    Explore at:
    Dataset updated
    Mar 23, 2020
    Dataset authored and provided by
    Office of Planning and Statistics
    Time period covered
    2013 - 2014
    Area covered
    Palau
    Description

    Abstract

    The purpose of the Household Income and Expenditure Survey (HIES) survey is to obtain information on the income, consumption pattern, incidence of poverty, and saving propensities for different groups of people in Palau. This information will be used to guide policy makers in framing socio-economic developmental policies and in initiating financial measures for improving economic conditions of the people.

    Some more specific outputs from the survey are listed below:

    a) To obtain expenditure weights and other useful data for the revision of the consumer price index; b) To supplement the data available for use in compiling official estimates of household accounts in the systems of national accounts; c) To supply basic data needed for policy making in connection with social and economic planning, including producing as many of Palau's National Minimum Development Indicators (NMDI's) as possible; d) To provide data for assessing the impact on household living conditions of existing or proposed economic and social measures, particularly changes in the structure of household expenditures and in household consumption; e) To gather information on poverty lines and incidence of poverty throughout Palau.

    Geographic coverage

    National Coverage, excluding Sonsorol and Hatohobei. Urban and Rural.

    Analysis unit

    • Households;
    • Individuals.

    Universe

    All private households and group quarters (people living in Work dormitories, as it is an important aspect of the subject matter focused on in this survey, and not addressed elsewhere).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used was the 2012 Palau census, which provided population figures for everyone living in both private households and group quarters (e.g. worker barracks, school dormitories, prison). The sampling selection was done separately in private dwellings and group quarters.

    It is an accepted practice for the Household Income and Expenditure Survey (HIES) to cover all living quarters regarded as private dwellings, and the Palau 2013/14 HIES will follow this recommendation.

    For group quarters it is also recommended to exclude the prison, as it is not considered appropriate to include such institutions in a survey such as HIES.

    A decision as to whether the remaining group quarters should be included is based on the following criteria:

    1) Ease in accessing and covering them in a survey such as HIES 2) Relevance to the subject matter of the survey 3) Whether their impact on the subject matter is mostly covered already

    Under these criteria, the following recommendations are made: -School/college dormitories: Will exclude from HIES as these individuals will be covered in the households from which they came (if selected) -Work dormitories: Aim to include in the HIES as they are an important aspect of the subject matter focused on in this survey, and not addressed elsewhere -Live aboard: Will exclude due to the movement of such vehicles, and the minimal impact they may have on such a survey -Convents/religious quarters: Will exclude based on their expected minimum impact on the survey subject matter

    NB: Given students in dorms are expected to have a high portion of their income and expenses covered in their original household of origin, and there were no religious group quarters identified during the census, only persons in the prison and living aboard are expected to be excluded from the survey. These people account for 81 out of 2,322 group quarters residents (only 3.6%).

    Although the response rates were down in the 2006 HIES, with a smaller more experienced team working over 12 months, it is expected there will be improvements in this area. However, the expected sample loss of 10 per cent was probably too ambitious, and given the actual rate ended up at 287/1,063 = 27 per cent, it is more realistic to assume a sample loss of around 15 per cent with improvements for the 2013/14 HIES. Based on the RSEs presented in 2.3.2, it also appears that the 20 per cent desirable sample produced sound results for the survey, and with higher response rates anticipated, these results from a sample error perspective should improve. It is therefore proposed for the 2013/14 Palau HIES that a sample size of 20 per cent be adopted, which also allows for sample loss of 15 per cent.

    In the 2006 Palau HIES, effort was made to design a sample which could produce results for the six domains (stratum). Whilst reasonable results were generated for each of these domains, it was felt that post survey, there was no great use of these results at that level. For the 2013 HIES it is proposed to focus on generating reliable results at the national level, with focus also being place on producing results for the urban/rural split. In the case of Palau, the urban population is considered to consist of the states of Koror and Airai.

    The last phase to finalizing the sample numbers was to adjust the desirable sample numbers, so that they could be easily applied by the HIES team in a practical manner over the course of the 12 month fieldwork. This was achieved by modifying the sample counts (not too much) to enable sample sizes each round would be of a similar size, and workloads for each enumerator were the same size each round. The desirable workload for an enumerator covering the PD population was 10 households, whereas this figure was increased to 14 persons for GQs as it was envisaged the amount of time required to cover a person in a GQ would be significantly less. With this in mind, we wanted to ideally have the PD sample to be divisible by 160 so this would enable an even number of households each round, whilst maintaining a workload of 10 households for interviewers covering these areas. For the GQ sample, given the desirable number of GQs was already 225, and 16x14=224, then a simple reduction of 1 in the GQ sample would result in a nice even workload of 14 persons per round for 1 interviewer. This logic was also applied to the split between urban and rural resulting in 14 workloads in urban and 2 workloads in rural.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Developped in English, a questionnaire consisting of four Modules and a Weekly Diary covering 2 weeks was used for the Republic of Palau Household Income and Expenditure Survey (HIES) 2013. Each Module covers distinct but connected portion of the Household.

    The Modules are as follows: -Module 1 - Demographic Information: · Demographic Profile · Labor Force Status · Health Status · Communication Status -Module 2 - Household Expenditure: · Housing Characteristics · Housing Tenure Expenditure · Utilities & Communication Details · Utilities & Communication Expenditure · Land & Home Details · Land & Home Expenditure · Household Goods & Assets Details · Household Goods & Assets Expenditures · Vehicles & Accessories Details · Vehicles & Accessories Expenditures · Private Travel Details · Private Travel Expenditures · Household Services Expenditure · Contributions to Special Occasions · Provisions of Financial Support · Loans · Household Assets Insurance & Taxes · Personal Insurance -Module 3 - Individual Expenditures: · Education grants and scholarships · Education Identifications · Education Expenditures · Health Identifications · Health Expenditures · Clothing Identification · Clothing Expenditure · Communication Identification · Communication Expenditures · Luxury Items Identification · Luxury Items Expenditures -Module 4 - Income: · Wages & Salary: In country (current) · Wages & Salary: Overseas (last 12 months) · Wages & Salary: In country (last 12 months) · Income from Non Subsistence Business · Description of Agriculture & Forestry Activities · Income from Agriculture & Forestry Activities · Description of Handicraft & Home Processed Food Activities · Income from Handicraft & Home Processed Food Activities · Description of Livestock & Aquaculture Activities · Income from Livestock & Aquaculture Activities · Description of Fishing & Hunting Activities · Income from Fishing & Hunting Activities · Property Income, Transfer Income & Other Receipts · Remittances & Other Cash Gifts -Weekly Diary - Covering 14 Days (2 weeks): · Daily expenditure of food and non-food items · Payments of service made · Gambling winning and losses · Items received for free · Home produced food and non-food items.

    All questionnaires are provided as external resources in this documentation.

    Cleaning operations

    Program: CSPro 5.1x

    Data editing took place at a number of stages throughout the processing, including:

    a) Office editing and coding b) During data entry; Error report correction; Secondary editing by Quality Control Officer (QCO) c) Structure checking and completeness

    Detailed documentation of the editing of data can be found in the "Data processing guidelines" document provided as an external resource.

    Response rate

    Some 1,145 households were selected (in private dwellings and workers quarters) to participate in the survey, and the response rate was 75.8% (i.e. 869 households responded). This response rate allows for statistically significant analysis at the national, urban and rural level.

    Response rates for private households by State: -Koror: 355 households responded out of 480 selected => 73.9%; -Airai: 119 households responded out of 160 selected => 74.4%; -URBAN: 474 households responded out of 640 selected => 74.1%; -Kayangel: 0 households responded out of 10 selected => 0%; -Ngarchelong: 27 households responded out of 30 selected => 90%; -Ngaraard: 22 households responded

  10. p

    Household Income and Expenditure Survey 2015-2016 - Tuvalu

    • microdata.pacificdata.org
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Division (2023). Household Income and Expenditure Survey 2015-2016 - Tuvalu [Dataset]. https://microdata.pacificdata.org/index.php/catalog/722
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Central Statistics Division
    Time period covered
    2015 - 2016
    Area covered
    Tuvalu
    Description

    Abstract

    The main purpose of a HIES survey was to present high quality and representative national household data on income and expenditure in order to update Consumer Price Index (CPI), improve statistics on National Accounts and measure poverty within the country. These statistics are a requirement for evidence based policy-making in reducing poverty within the country and monitor progress in the national strategic plan "Te Kakeega 3".

    The 2015-16 Household Income and Expenditure Survey (HIES) is the third HIES that was conducted by the Central Statistics Division since Tuvalu gained political independence in 1978. With great assitance from the Pacific Community (SPC) experts, the HIES was conducted over a period of 12 months in urban (Funafuti) and rural (4 outer islands) areas. From a total of 1,872 households on Tuvalu, an amount of 38 percent sample of all households in Tuvalu was selected to provide valid response.

    Geographic coverage

    National Coverage.

    Analysis unit

    Household and Individual.

    Universe

    The scope of the 2015/2016 Household Income and Expenditure Survey (HIES) was all occupied households in Tuvalu. Households are the sampling unit, defined as a group of people (related or not) who pool their money, and cook and eat together. It is not the physical structure (dwelling) in which people live. HIES covered all persons who were considered to be usual residents of private dwellings (must have been living in Tuvalu for a period of 12-months, or have intention to live in Tuvalu for a period of 12-months in order to be included in the survey). Usual residents who are temporary away are included as well (e.g., for work or a holiday).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Out of the total 1,872 households (HHs) listed in 2015, a sample 706 households which is 38 percent of the the total households were succesfully interviewed for a response rate of 98%.

    SAMPLING FRAME: The 2010 (Household Income and Expenditure Survey (HIES) sample was spread over 12 months rounds - one each quarter - and the specifications of the final responding households are summarised below: Tuvalu urban: Selected households: 259 = 217 responded; Tuvalu rural: Selected households: 346 = 324 responded.

    In 2010, 605 HHs were selected and 541 sufficiently responded. The 2010 HIES provided solid estimates for expenditure aggregates at the national level (sampling error for national expenditure estimate is 3.1%).

    Similarly to the 2010 HIES, private occupied dwellings were the statistical unit for the 2015/2016 HIES. Institutions and vacant dwellings were removed from the sampling frame. Some areas in Tuvalu are very difficult to reach due to the cost of transportation and the remoteness of some islands, which is why they are excluded from the sample selection. The following table presents the distribution of the HHs according to their location (main island or outer islands in each domain) based on the 2012 Population and Housing Census: -Urban - Funafuti: 845 (48%); -Rural - Nanumea: 115 (7%); -Rural - Nanumaga: 116 (7%); -Rural - Niutao: 123 (7%); -Rural - Nui: 138 (8%); -Rural - Vaitupu: 226 (13%); -Rural - Nukufetau: 124 (%); -Rural - Nukulaelae: 67 (%); -Rural - Niulakita: 7 (%); -TOTAL: 1761 (100%).

    The 2012 Population and Household Census (PHC) wsa used to select the island to interview, and then in each selected island the HH listing was updated for selection. For budget and logistics reasons the islands of Nui, Nukufetau, Nukulaelae and Niukalita were excluded from the sample selection. In total 19% of the HHs were excluded from the selection but this decision should not affect the HIES outputs as those 19% show similar profile as other HHs who live in the outer islands. This exclusion will be take into consideration in the sampling weight computation in order to cover 100% of the outer island HHs.

    SAMPLE SELECTION AND SAMPLE SIZE: A simple random selection was used in each of the selected island (HHs were selected directly from the sampling frame). Based on the findings from the 2010 Tuvalu HIES, the sample in Funafuti has been increased and the one in rural remains stable. Within each rural selected atolls, the allocation of the sample size is proportional to its size (baed on the 2012 population census). The table below shows the number of HHs to survey: Urban - Funafuti: 384; Rural - Vaitupu: 126; Rural - Nanumea: 63; Rural - Niutao: 84; Rural - Nanumaga: 63; TUVALU: 720.

    The expected sample size has been increased by one third (361 HHs) with the aim of pre-empting the non contacted HHs (refusals, absence….). The 2015/2016 HIES adopted the standardized HIES methodology and survey instruments for the Pacific Islands region. This approach, developed by the Pacific Community (SPC), has resulted in proven survey forms being used for data collection. It involves collection of data over a 12-month period to account for seasonal changes in income and expenditure patterns, and to keep the field team to a smaller and more qualified group. Their implementation had the objective of producing consistent and high quality data.

    Sampling deviation

    For budget and logistics reasons the islands of Nui, Nukufetau, Nukulaelae and Niukalita were excluded from the sample selection. In total 19% of the HHs were excluded from the selection but this decision should not affect the HIES outputs as those 19% show similar profile as other HHs who live in the outer islands. This exclusion will be take into consideration in the sampling weight computation in order to cover 100% of the outer island HHs.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey contain 4 modules and 2 Diaries (1 diary for each of the two weeks that a household was enumerated). The purpose of a Diary is to record all the daily expenses and incomes of a Household as shown by its topics below; - DIARY
    The Diary module contains questions such as "What did your Household buy Today (Food and Non-Food Items)?", "Payments for Services made Today", "Food, Non-Food and Services Received for Free", "Home-Produced Items Today", "Overflow Sheet for Items Bought This Week", "Overflow Sheet for Services Paid for This Week", "Overflow Sheet for Items Received for Free this Week", and an "Overflow Sheet for Home-Produced Items This Week".

    The 4 modules are detailed below; - MODULE 1 - DEMOGRAPHIC INFORMATION The module contains individual demograhic questions on their Demographic Profiles, Labour Force status (Activities), Education status, Health status, Communication status and questions on "Household members that have left the household". - MODULE 2 - HOUSEHOLD EXPENDITURE The module contains household expenditure questions the housing characteristics, Housing tenure expenditures, Utilities and Communication, Land, Household goods and assets, Vehicles and accessories, Private Travel details, Household services expenditures, Cash contributions, Provisions of Financial support, Household asset insurance and taxes and questions on Personal insurance. - MODULE 3 - INDIVIDUAL EXPENDITURE This module contains individual expenditure questions on Education, Health, Clothing, Communication, Luxury Items, Alcohol, Kava and Tobacco, and Deprivation questions. - MODULE 4 - HOUSEHOLD & INDIVIDUAL INCOME
    This module contains household and individual questions on their income, on topics such as Wages and Salary, Agricultural and Forestry Activities, Fishing, Gathering and Hunting Activities, Livestock and Aquaculture Activities, Handicraft/Home-processed Food Activities, Income from Non-subsistence Business, Property income, transfer income & other Receipts, and Remmitances and other Cash gifts.

    Depending on the information being collected, a recall period (ranging from the last 7 days to the last 12 months) is applied to various sections of the questionnaire. The forms were completed by face-to-face interview, usually with the HH head providing most of the information, with other household (HH) members being interviewed when necessary. The interviews took place over a 2-week period such that the HH diary, which is completed by the HH on a daily basis for 2 weeks, can be monitored while the module interviews take place. The HH diary collects information on the HH's daily expenditure on goods and services; and the harvest, capture, collection or slaughter of primary produce (fruit, vegetables and animals) by intended purpose (home consumption, sale or to give away). The income and expenditure data from the modules and the diary are concatenated (ensuring that double counting does not occur), annualised, and extrapolated to form the income and expenditure aggregates presented herein.

    Cleaning operations

    The survey procedure and enumeration team structure allowed for in-round data entry, which gives the field staff the opportunity to correct the data by manual review and by using the entry system-generated error messages. This process was designed to improve data quality. The data entry system used system-controlled entry, interactive coding and validity and consistency checks. Despite the validity and consistency checks put in place, the data still required cleaning. The cleaning was a 2-stage process, which included manual cleaning while referencing the questionnaire, whereas the second stage involved computer-assisted code verification and, in some cases, imputation. Once the data were clean, verified and consistent, they were recoded to form a final aggregated database, consisting of: 1. Person level record - characteristics of every HH member, including activity

  11. f

    Data from: Households across All Income Quintiles, Especially the Poorest,...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Nov 5, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Behrman, Jere R.; Penny, Mary E.; Crookston, Benjamin T.; Dearden, Kirk A.; Humphries, Debbie L.; Schott, Whitney (2014). Households across All Income Quintiles, Especially the Poorest, Increased Animal Source Food Expenditures Substantially during Recent Peruvian Economic Growth [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001258463
    Explore at:
    Dataset updated
    Nov 5, 2014
    Authors
    Behrman, Jere R.; Penny, Mary E.; Crookston, Benjamin T.; Dearden, Kirk A.; Humphries, Debbie L.; Schott, Whitney
    Description

    BackgroundRelative to plant-based foods, animal source foods (ASFs) are richer in accessible protein, iron, zinc, calcium, vitamin B-12 and other nutrients. Because of their nutritional value, particularly for childhood growth and nutrition, it is important to identify factors influencing ASF consumption, especially for poorer households that generally consume less ASFs.ObjectiveTo estimate differential responsiveness of ASF consumption to changes in total household expenditures for households with different expenditures in a middle-income country with substantial recent income increases.MethodsThe Peruvian Young Lives household panel (n = 1750) from 2002, 2006 and 2009 was used to characterize patterns of ASF expenditures. Multivariate models with controls for unobserved household fixed effects and common secular trends were used to examine nonlinear relationships between changes in household expenditures and in ASF expenditures.ResultsHouseholds with lower total expenditures dedicated greater percentages of expenditures to food (58.4% vs.17.9% in 2002 and 24.2% vs. 21.5% in 2009 for lowest and highest quintiles respectively) and lower percentages of food expenditures to ASF (22.8% vs. 33.9% in 2002 and 30.3% vs. 37.6% in 2009 for lowest and highest quintiles respectively). Average percentages of overall expenditures spent on food dropped from 47% to 23.2% between 2002 and 2009. Households in the lowest quintiles of expenditures showed greater increases in ASF expenditures relative to total consumption than households in the highest quintiles. Among ASF components, meat and poultry expenditures increased more than proportionately for households in the lowest quintiles, and eggs and fish expenditures increased less than proportionately for all households.ConclusionsIncreases in household expenditures were associated with substantial increases in consumption of ASFs for households, particularly households with lower total expenditures. Increases in ASF expenditures for all but the top quintile of households were proportionately greater than increases in total food expenditures, and proportionately less than overall expenditures.

  12. P

    Food security: Number and proportion of households by poverty, food security...

    • pacificdata.org
    • pacific-data.sprep.org
    csv
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2025). Food security: Number and proportion of households by poverty, food security status and food activity, by geography, sex, age and urbanization from the Pacific island countries [Dataset]. https://pacificdata.org/data/dataset/food-security-number-and-proportion-of-households-by-poverty-food-security-df-food-security-hies-2
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    SPC
    Time period covered
    Jan 1, 2012 - Dec 31, 2021
    Description

    This dataset provides numbers and proportions of households involved in primary activities (livestock, fishing, handicraft), by geography (1 sub-national level), sex, age and urbanization, poverty status (2 categories) and food security status (2 categories) for Pacific island countries based on Household Income and Expenditure Surveys (HIES). The table has been compiled as a result of a collaborative project on food security between the Pacific Community (SPC) and the Food and Agriculture Organization of the United Nations (FAO).

    Find more Pacific data on PDH.stat.

  13. Household Income, Expenditure and Consumption Survey 2008-2009 - Egypt

    • webapps.ilo.org
    Updated Nov 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Agency for Public Mobilization and Statistics (CAPMAS) (2016). Household Income, Expenditure and Consumption Survey 2008-2009 - Egypt [Dataset]. https://webapps.ilo.org/surveyLib/index.php/catalog/1256
    Explore at:
    Dataset updated
    Nov 14, 2016
    Dataset provided by
    Central Agency for Public Mobilization and Statisticshttps://www.capmas.gov.eg/
    Authors
    Central Agency for Public Mobilization and Statistics (CAPMAS)
    Time period covered
    2008 - 2009
    Area covered
    Egypt
    Description

    Abstract

    The Household Income, Expenditure and Consumption Survey (HIECS) is of great importance among other household surveys conducted by statistical agencies in various countries around the world. This survey provides a large amount of data to rely on in measuring the living standards of households and individuals, as well as establishing databases that serve in measuring poverty, designing social assistance programs, and providing necessary weights to compile consumer price indices, considered to be an important indicator to assess inflation. The HIECS 2008/2009 is the tenth Household Income, Expenditure and Consumption Survey that was carried out in 2008/2009, among a long series of similar surveys that started back in 1955.

    Survey Objectives: 1- To identify expenditure levels and patterns of population as well as socio- economic and demographic differentials. 2- To estimate the quantities and values of commodities and services consumed by households during the survey period to determine the levels of consumption and estimate the current demand which is an important input for national planning. Current and past demand estimates are utilized to predict future demands 3- To measure mean household and per-capita expenditure for various expenditure items along with socio-economic correlates. 4- To define percentage distribution of expenditure for various items used in compiling consumer price indices which is considered important indicator for measuring inflation 5- To define mean household and per-capita income from different sources. 6- To provide data necessary to measure standard of living for households and individuals. Poverty analysis and setting up a basis for social welfare assistance are highly dependant on the results of this survey. 7- To provide essential data to measure elasticity which reflects the percentage change in expenditure for various commodity and service groups against. the percentage change in total expenditure for the purpose of predicting the levels of expenditure and consumption for different commodity and service items in urban and rural areas. 8- To provide data essential for comparing change in expenditure against change in income to measure income elasticity of expenditure. 9- To study the relationships between demographic, geographical and housing characteristics of households and their income and expenditure for commodities and services. 10- To provide data necessary for national accounts especially in compiling inputs and outputs tables. 11- To identify consumers behavior changes among socio-economic groups in urban and rural areas. 12- To identify per capita food consumption and its main components of calories, proteins and fats according to its sources and the levels of expenditure in both urban and rural areas. 13- To identify the value of expenditure for food according to sources, either from household production or not, in addition to household expenditure for non food commodities and services. 14- To identify distribution of households according to the possession of some appliances and equipments such as (cars, satellites, mobiles …) in urban and rural areas.

    Geographic coverage

    National

    Analysis unit

    • Househoolds
    • Individuals

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample of HIECS, 2008-2009 is a two-stage stratified cluster sample, approximately self-weighted, of nearly 48000 households. The main elements of the sampling design are described in the following.

    Sample Size It has been deemed important to retain the same sample size of the previous two HIECS rounds. Thus, a sample of about 48000 households has been considered. The justification of maintaining the sample size at this level is to have estimates with levels of precision similar to those of the previous two rounds: therefore trend analysis with the previous two surveys will not be distorted by substantial changes in sampling errors from round to another. In addition, this relatively large national sample implies proportional samples of reasonable sizes for smaller governorates. Nonetheless, over-sampling has been introduced to raise the sample size of small governorates to about 1000 households As a result, reasonably precise estimates could be extracted for those governorates. The over-sampling has resulted in a slight increase in the national sample to 48658 households.

    Cluster size An important lesson learned from the previous two HIECS rounds is that the cluster size applied in both surveys is found to be too large to yield an accepted design effect estimates. The cluster size was 40 households in the 2004-2005 round, descending from 80 households in the 1999-2000 round. The estimates of the design effect (deft) for most survey measures of the latest round were extraordinary large. As a result, it has been decided to decrease the cluster size to only 19 households (20 households in urban governorates to account for anticipated non-response in those governorates: in view of past experience non-response is almost nil in rural governorates).

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    Three different questionnaires have been designed as following: 1- Expenditure and consumption questionnaire. 2- Diary questionnaire for expenditure and consumption. 3- Income questionnaire.

    Cleaning operations

    Office Editing: It is one of the main stages of the survey. It started as soon as the questionnaires were received from the field and accomplished by selected work groups. It includes: a- Editing of coverage and completeness b- Editing of consistency c- Arithmetic editing of quantities and values.

    Data Coding: Specialized staff has coded the data of industry, occupation and geographical identification.

    Data Processing and preparing final results It included machine data entry, data validation and tabulation and preparing final survey volumes

    Harmonized Data: - The Statistical Package for Social Science (SPSS) is used to clean and harmonize the datasets. - The harmonization process starts with cleaning all raw data files received from the Statistical Office. - Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program is generated for each dataset to generate/compute/recode/rename/format/label harmonized variables. - A post-harmonization cleaning process is run on the data. - Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.

    Response rate

    For the total sample, the response rate was 96.3% (93.95% in urban areas and 98.4% in rural areas). Response rates on the governorate level at each sampling stage are presented in the methodology document attached to the external resources in both Arabic and English.

    Sampling error estimates

    The sampling error of major survey estimates has been derived using the Ultimate Cluster Method as applied in the CENVAR Module of the Integrated Microcomputer Processing System (IMPS) Package. In addition to the estimate of sampling error, the output includes estimates of coefficient of variation, design effect (deff) and 95% confidence intervals.

    Data appraisal

    Quality Control Procedures:

    The precision of survey results depends to a large extent on how the survey has been prepared for. As such, it was deemed crucial to exert much effort and to take necessary actions towards rigorous preparation for the present survey. The preparatory activities, extended over 3 months, included forming Technical Committee. The Committee has set up the general framework of survey implementation such as:

    1- Applying the recent international recommendations of different concepts and definitions of income and expenditure considering maintaining the consistency with the previous surveys in order to compare and study the changes in pertinent indicators.

    2- Evaluating the quality of data in all different Implementation stages to avoid or minimize errors to the lowest extent possible through: - Implementing field editing after finishing data collection for households in governorates to avoid any errors in suitable time. - Setting up a program for the Survey Technical Committee Members and survey staff for visiting field work in all governorates (each 15 days) to solve any problem in the proper time. - Re-interviewing a sample of households by Quality Control Department and examining the differences with the original responses. - For the purpose of quality assurance, tables were generated for each survey round where internal consistency checks were performed to study the plausibility of mean household expenditure on major expenditure commodity groups and its variability over major geographic regions.

  14. P

    Philippines PTE: PhP 250,000 & over: Food Expenditure (FE)

    • ceicdata.com
    Updated Aug 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). Philippines PTE: PhP 250,000 & over: Food Expenditure (FE) [Dataset]. https://www.ceicdata.com/en/philippines/family-income-and-expenditure-survey-percentage-distribution-of-family-expenditure-by-income-class/pte-php-250000--over-food-expenditure-fe
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2015
    Area covered
    Philippines
    Variables measured
    Household Income and Expenditure Survey
    Description

    Philippines PTE: PhP 250,000 & over: Food Expenditure (FE) data was reported at 35.300 % in 2015. This records an increase from the previous number of 34.900 % for 2012. Philippines PTE: PhP 250,000 & over: Food Expenditure (FE) data is updated yearly, averaging 35.100 % from Dec 2012 (Median) to 2015, with 2 observations. The data reached an all-time high of 35.300 % in 2015 and a record low of 34.900 % in 2012. Philippines PTE: PhP 250,000 & over: Food Expenditure (FE) data remains active status in CEIC and is reported by Philippine Statistics Authority. The data is categorized under Global Database’s Philippines – Table PH.H026: Family Income and Expenditure Survey: Percentage Distribution of Family Expenditure: By Income Class.

  15. Estimated global overweight and obesity burden in pregnant women based on...

    • plos.figshare.com
    tiff
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cheng Chen; Xianglong Xu; Yan Yan (2023). Estimated global overweight and obesity burden in pregnant women based on panel data model [Dataset]. http://doi.org/10.1371/journal.pone.0202183
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Cheng Chen; Xianglong Xu; Yan Yan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveTo estimate the global and country-level burden of overweight and obesity among pregnant women from 2005 to 2014.MethodsPublicly accessible country-level data were collected from the World Health Organization, the World Bank and the Food and Agricultural Organization. We estimated the number of overweight and obese pregnant women among 184 countries and determined the time-related trend from 2005 to 2014. Based on panel data model, we determined the effects of food energy supply, urbanization, gross national income and female employment on the number of overweight and obese pregnant women.ResultsWe estimated that 38.9 million overweight and obese pregnant women and 14.6 million obese pregnant women existed globally in 2014. In upper middle income countries and lower middle income countries, there were sharp increases in the number of overweight and obese pregnant women. In 2014, the percentage of female with overweight and obesity in India was 21.7%, and India had the largest number of overweight and obese pregnant women (4.3 million), which accounted for 11.1% in the world. In the United States of America, a third of women were obese, and the number of obese pregnant women was 1.1 million. In high income countries, caloric supply and urbanization were positively associated with the number of overweight and obese pregnant women. The percentage of employment in agriculture was inversely associated with the number of overweight and obese pregnant women, but only in upper middle income countries and lower middle income countries.ConclusionThe number of overweight and obese pregnant women has increased in high income and middle income countries. Environmental changes could lead to increased caloric supply and decreased energy expenditure among women. National and local governments should work together to create a healthy food environment.

  16. P

    Food security: Number and proportion of households by geography, sex, age...

    • pacificdata.org
    • pacific-data.sprep.org
    csv
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2025). Food security: Number and proportion of households by geography, sex, age and urbanization in the Pacific which were involved in agriculture farming [Dataset]. https://pacificdata.org/data/dataset/food-security-number-and-proportion-of-households-by-geography-sex-age-and-ur-df-agriculture-hies
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    SPC
    Time period covered
    Jan 1, 2012 - Dec 31, 2021
    Description

    This dataset provides numbers and proportions of households involved in primary activities (crop, livestock, fishing), by geography (1 sub-national level), sex, age and urbanization for the Pacific island countries, based on Household Income and Expenditure Surveys (HIES). The table has been compiled as a result of a collaborative project on food security between the Pacific Community (SPC) and the pacific island countries.

    Find more Pacific data on PDH.stat.

  17. 🍕Food Bank🏦of the World🌍

    • kaggle.com
    zip
    Updated Nov 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pranav941 (2022). 🍕Food Bank🏦of the World🌍 [Dataset]. https://www.kaggle.com/datasets/pranav941/-world-food-wealth-bank/code
    Explore at:
    zip(12439185 bytes)Available download formats
    Dataset updated
    Nov 9, 2022
    Authors
    Pranav941
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Dataset Structure & Description

    https://imgur.com/AYzsmYU.jpg" alt="Dataset Structure">

    Context and Inspiration

    I read an article yesterday which got my mind storming, A article by Worldbank on August 15th, 2022 better explains it, It has been quoted below,
    I already have a project i'm working on since Feb 2021, trying to solving this problem, listed in my datasets

    This dataset showcases the statistics over the past 6-7 decades which covers the production of 150+ unique crops, 50+ livestock elements, Land distribution by usage and population, As aspiring data scientists one can try to extract insights incentivizing the optimal use of natural resources and distribution of resources

    August 15, 2022 - Worldbank

    Record high food prices have triggered a global crisis that will drive millions more into extreme poverty, magnifying hunger and malnutrition, while threatening to erase hard-won gains in development. The war in Ukraine, supply chain disruptions, and the continued economic fallout of the COVID-19 pandemic are reversing years of development gains and pushing food prices to all-time highs. Rising food prices have a greater impact on people in low- and middle-income countries, since they spend a larger share of their income on food than people in high-income countries. This brief looks at rising food insecurity and World Bank responses to date.

    IMAGE ALT TEXT HERE

    Please leave a upvote if you found this helpful ☮️

    Hello 👋, If you are enjoying so far, Please checkout my other Datasets, I would love to hear your support & feedback on it, Thank you !

    <---(❁´◡`❁)--->

    Checkout my other Datasets & Notebooks

  18. e

    Household Income, Expenditure, and Consumption Survey, HIECS 2012/2013 -...

    • erfdataportal.com
    Updated Oct 30, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Agency For Public Mobilization & Statistics (2014). Household Income, Expenditure, and Consumption Survey, HIECS 2012/2013 - Egypt [Dataset]. http://www.erfdataportal.com/index.php/catalog/67
    Explore at:
    Dataset updated
    Oct 30, 2014
    Dataset provided by
    Economic Research Forum
    Central Agency For Public Mobilization & Statistics
    Time period covered
    2012 - 2013
    Area covered
    Egypt
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)

    The Household Income, Expenditure and Consumption Survey (HIECS) is of great importance among other household surveys conducted by statistical agencies in various countries around the world. This survey provides a large amount of data to rely on in measuring the living standards of households and individuals, as well as establishing databases that serve in measuring poverty, designing social assistance programs, and providing necessary weights to compile consumer price indices, considered to be an important indicator to assess inflation.

    The First Survey that covered all the country governorates was carried out in 1958/1959 followed by a long series of similar surveys . The current survey, HIECS 2012/2013, is the eleventh in this long series.

    Starting 2008/2009, Household Income, Expenditure and Consumption Surveys were conducted each two years instead of five years. this would enable better tracking of the rapid changes in the level of the living standards of the Egyptian households.

    CAPMAS started in 2010/2011 to follow a panel sample of around 40% of the total household sample size. The current survey is the second one to follow a panel sample. This procedure will provide the necessary data to extract accurate indicators on the status of the society. The CAPMAS also is pleased to disseminate the results of this survey to policy makers, researchers and scholarly to help in policy making and conducting development related researches and studies

    The survey main objectives are:

    • To identify expenditure levels and patterns of population as well as socio- economic and demographic differentials.

    • To measure average household and per-capita expenditure for various expenditure items along with socio-economic correlates.

    • To Measure the change in living standards and expenditure patterns and behavior for the individuals and households in the panel sample, previously surveyed in 2008/2009, for the first time during 12 months representing the survey period.

    • To define percentage distribution of expenditure for various items used in compiling consumer price indices which is considered important indicator for measuring inflation.

    • To estimate the quantities, values of commodities and services consumed by households during the survey period to determine the levels of consumption and estimate the current demand which is important to predict future demands.

    • To define average household and per-capita income from different sources.

    • To provide data necessary to measure standard of living for households and individuals. Poverty analysis and setting up a basis for social welfare assistance are highly dependent on the results of this survey.

    • To provide essential data to measure elasticity which reflects the percentage change in expenditure for various commodity and service groups against the percentage change in total expenditure for the purpose of predicting the levels of expenditure and consumption for different commodity and service items in urban and rural areas.

    • To provide data essential for comparing change in expenditure against change in income to measure income elasticity of expenditure.

    • To study the relationships between demographic, geographical, housing characteristics of households and their income.

    • To provide data necessary for national accounts especially in compiling inputs and outputs tables.

    • To identify consumers behavior changes among socio-economic groups in urban and rural areas.

    • To identify per capita food consumption and its main components of calories, proteins and fats according to its nutrition components and the levels of expenditure in both urban and rural areas.

    • To identify the value of expenditure for food according to its sources, either from household production or not, in addition to household expenditure for non-food commodities and services.

    • To identify distribution of households according to the possession of some appliances and equipments such as (cars, satellites, mobiles ,…etc) in urban and rural areas that enables measuring household wealth index.

    • To identify the percentage distribution of income earners according to some background variables such as housing conditions, size of household and characteristics of head of household.

    • To provide a time series of the most important data related to dominant standard of living from economic and social perspective. This will enable conducting comparisons based on the results of these time series. In addition to, the possibility of performing geographical comparisons.

    Compared to previous surveys, the current survey experienced certain peculiarities, among which :

    1- The total sample of the current survey (24.9 thousand households) is divided into two sections:

    a- A new sample of 16.1 thousand households. This sample was used to study the geographic differences between urban governorates, urban and rural areas, and frontier governorates as well as other discrepancies related to households characteristics and household size, head of the household's education status, ....... etc.

    b- A panel sample of 2008/2009 survey data of around 8.8 thousand households was selected to accurately study the changes that may have occurred in the households' living standards over the period between the two surveys and over time in the future since CAPMAS will continue to collect panel data for HIECS in the coming years.

    2- Some additional questions that showed to be important based on previous surveys results, were added to the survey questionnaire, such as:

    a- The extent of health services provided to monitor the level of services available in the Egyptian society. By collecting information on the in-kind transfers, the household received during the year; in order to monitor the assistance the household received from different sources government, association,..etc.

    b- Identifying the main outlet of fabrics, clothes and footwear to determine the level of living standards of the household.

    3- Quality control procedures especially for fieldwork are increased, to ensure data accuracy and avoid any errors in suitable time, as well as taking all the necessary measures to guarantee that mistakes are not repeated, with the application of the principle of reward and punishment.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.

    Geographic coverage

    Covering a sample of urban and rural areas in all the governorates.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)

    The sample of HIECS 2012/2013 is a self-weighted two-stage stratified cluster sample, of around 24.9 households. The main elements of the sampling design are described in the following.

    1- Sample Size The sample has been proportionally distributed on the governorate level between urban and rural areas, in order to make the sample representative even for small governorates. Thus, a sample of about 24863 households has been considered, and was distributed between urban and rural with the percentages of 45.4 % and 54.6, respectively. This sample is divided into two parts: a- A new sample of 16094 households selected from main enumeration areas. b- A panel sample of 8769 households (selected from HIECS 2010/2011 and the preceding survey in 2008/2009).

    2- Cluster size The cluster size in the previous survey has been decreased compared to older surveys since large cluster sizes previously used were found to be too large to yield accepted design effect estimates (DEFT). As a result, it has been decided to use a cluster size of only 8 households (In HIECS 2011/2012 a cluster size of 16 households was used). While the cluster size for the panel sample was 4 households.

    3- Core Sample The core sample is the master sample of any household sample required to be pulled for the purpose of studying the properties of individuals and families. It is a large sample and distributed on urban and rural areas of all governorates. It is a representative sample for the individual characteristics of the Egyptian society. This sample was implemented in January 2012 and its size reached more than 1 million household (1004800 household) selected from 5024 enumeration areas distributed on all governorates (urban/rural) proportionally with the sample size (the enumeration area size is around 200 households). The core sample is the sampling frame from which the samples for the surveys conducted by CAPMAS are pulled, such as the Labor Force Surveys, Income, Expenditure And Consumption Survey, Household Urban Migration Survey, ...etc, in addition to other samples that may be required for outsources.

    New Households Sample 1000 sample areas were selected across all governorates (urban/rural) using a proportional technique with the sample size. The number

  19. Paired t-test for income and food expenditure gaps between February and June...

    • plos.figshare.com
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nahrin Rahman Swarna; Iffat Anjum; Nimmi Nusrat Hamid; Golam Ahmed Rabbi; Tariqul Islam; Ezzat Tanzila Evana; Nazia Islam; Md. Israt Rayhan; KAM Morshed; Abu Said Md. Juel Miah (2023). Paired t-test for income and food expenditure gaps between February and June 2020. [Dataset]. http://doi.org/10.1371/journal.pone.0266014.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Nahrin Rahman Swarna; Iffat Anjum; Nimmi Nusrat Hamid; Golam Ahmed Rabbi; Tariqul Islam; Ezzat Tanzila Evana; Nazia Islam; Md. Israt Rayhan; KAM Morshed; Abu Said Md. Juel Miah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Paired t-test for income and food expenditure gaps between February and June 2020.

  20. Cost of food as a share of minimum wages worldwide 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of food as a share of minimum wages worldwide 2024 [Dataset]. https://www.statista.com/statistics/1445755/minimum-wages-cost-food-worldwide/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2024
    Area covered
    Worldwide
    Description

    While the cost of a basic food basket as a share of net minimum wages in ******* and the ************** is quite modest, such a basket costs more than the minimum wage in *******.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2007). Share of income spent on basic essentials in the EU 1950-1990s [Dataset]. https://www.statista.com/statistics/1073153/share-income-spent-basics-eu-1950-1990s/
Organization logo

Share of income spent on basic essentials in the EU 1950-1990s

Explore at:
Dataset updated
Jan 1, 2007
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
European Union
Description

A major characteristic of life in Western Europe in the second half of the 20th century was the emergence of consumerism. For the generations who had endured the devastation of two world wars, the economic difficulties that accompanied these and the Great Depression, and widespread food shortages across these five decades, the opportunity to spend their newfound income was embraced. In 1950, at the end of the recovery period after the Second World War, almost two-thirds of all income in Western Europe's* most-developed nations was spent on basic essentials, such as food and clothing. While economic recovery ended for most countries by the early 1950s, rapid economic growth did not stop there. Throughout the 1960s and 1970s, household income increased by around three percent per year in the most developed countries and five percent per year across Southern Europe. Food spending In Britain, France, and Germany, the share of income spent on food in 1950 was around 44 percent; this dropped to about 27 percent in 1971, and 13 percent in the 1990s. There were some regional variations, specifically the slower rate of this transition in the south, as 34 and 52 percent of income was spent on food in Spain and Portugal, respectively, in 1971. Clothing spending In Europe's 15 most-developed countries, approximately 16 percent of income was spent on clothing in 1950, but this dropped below seven percent by 1996. This was not only because income rose over this period, but also as quality improved due to advances in manufacturing and synthetic materials, and as clothing became more affordable as much of the production was relocated from Europe to China, Turkey, and other parts of East Asia.

Search
Clear search
Close search
Google apps
Main menu