93 datasets found
  1. Number of centenarians worldwide 2000-2100

    • statista.com
    • ai-chatbox.pro
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of centenarians worldwide 2000-2100 [Dataset]. https://www.statista.com/statistics/996597/number-centenarians-worldwide/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    The number of people aged 100 years or more (centenarians) worldwide is expected to increase significantly over the coming decades. While there were only ******* centenarians in 2000, this number is predicted to increase to over **** million by 2100. As people on the planet live longer, global life expectancy increases.

  2. Number of people aged 100 years and older Japan 2005-2024, by gender

    • statista.com
    • ai-chatbox.pro
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of people aged 100 years and older Japan 2005-2024, by gender [Dataset]. https://www.statista.com/statistics/1172781/japan-number-centenarians-by-gender/
    Explore at:
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Japan
    Description

    As of September 2024, around 11,160 men and 83,960 women in Japan were aged 100 years and older. The total number of centenarians in that year added up to about 95,120 in the country, growing continuously over the past two decades.

  3. U.S. seniors as a percentage of the total population 1950-2050

    • statista.com
    • ai-chatbox.pro
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. seniors as a percentage of the total population 1950-2050 [Dataset]. https://www.statista.com/statistics/457822/share-of-old-age-population-in-the-total-us-population/
    Explore at:
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, about 17.7 percent of the American population was 65 years old or over; an increase from the last few years and a figure which is expected to reach 22.8 percent by 2050. This is a significant increase from 1950, when only eight percent of the population was 65 or over. A rapidly aging population In recent years, the aging population of the United States has come into focus as a cause for concern, as the nature of work and retirement is expected to change to keep up. If a population is expected to live longer than the generations before, the economy will have to change as well to fulfill the needs of the citizens. In addition, the birth rate in the U.S. has been falling over the last 20 years, meaning that there are not as many young people to replace the individuals leaving the workforce. The future population It’s not only the American population that is aging -- the global population is, too. By 2025, the median age of the global workforce is expected to be 39.6 years, up from 33.8 years in 1990. Additionally, it is projected that there will be over three million people worldwide aged 100 years and over by 2050.

  4. Number of centenarians in the U.S. 2016-2060

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of centenarians in the U.S. 2016-2060 [Dataset]. https://www.statista.com/statistics/996619/number-centenarians-us/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    United States
    Description

    This statistic shows the number of people aged 100 and over (centenarians) in the United States from 2016 to 2060. In 2016, there were 82,000 centenarians in the United States. This figure is expected to increase to 589,000 in the year 2060.

  5. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Oct 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2020). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2
    Explore at:
    application/rssxml, xml, csv, json, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Oct 22, 2020
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

  6. Canada Population: 100 Years & Over

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Canada Population: 100 Years & Over [Dataset]. https://www.ceicdata.com/en/canada/population/population-100-years--over
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 1, 2013 - Jun 1, 2024
    Area covered
    Canada
    Variables measured
    Population
    Description

    Canada Population: 100 Years & Over data was reported at 11.672 Person th in 2024. This records an increase from the previous number of 11.493 Person th for 2023. Canada Population: 100 Years & Over data is updated yearly, averaging 6.603 Person th from Jun 2000 (Median) to 2024, with 25 observations. The data reached an all-time high of 11.672 Person th in 2024 and a record low of 3.393 Person th in 2000. Canada Population: 100 Years & Over data remains active status in CEIC and is reported by Statistics Canada. The data is categorized under Global Database’s Canada – Table CA.G001: Population.

  7. Spanish Region and Election Results

    • kaggle.com
    zip
    Updated Jan 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BTH Project (2017). Spanish Region and Election Results [Dataset]. https://www.kaggle.com/mlprojectbth/spanish-region-and-election-results
    Explore at:
    zip(1011290 bytes)Available download formats
    Dataset updated
    Jan 13, 2017
    Authors
    BTH Project
    Description

    Context

    There's a story behind every dataset and here's your opportunity to share yours.

    This dataset collects characteristics of the population in each region (age distribution, unemployment rate, immigration percent and primary economic sector) and cross it with the votes per each political part.

    It has 52 fields:

    1) Code [String]: Region code of the different Spanish areas. There are 8126 different regions, but the dataset only contains 8119, because some sources were incomplete.

    2) RegionName [String]: Name of the region.

    3) Population [Int]: Amount of people living in that area (1st January 2015)

    4) TotalCensus [Int]: Number of people over 18 years old, which means that can vote.

    5) TotalVotes [Int]: Number of total votes.

    6) AbstentionPtge [Float]: Percent of the people that have not votes in the election. (TotalCensus-TotalVotes)/TotalCensus*100 %

    7) BlankVotesPtge [Float]: Percent of votes that were blank. Calculated as follows: BlankVotes/TotalVotes*100 %

    8) NullVotesPtge [Float]: Percent of votes that were null. Calculated as follows: NullVotes/TotalVotes*100 %

    9) PP_Ptge [Float]: Percent of the votes given to the political party called “Partido Popular”. (PP_Votes)/TotalVotes*100 %

    10) PSOE_Ptge [Float]: Percent of the votes given to the political party called “Partido Socialista Obrero Español” (PSOE_Votes)/TotalVotes*100 %

    11) Podemos_Ptge [Float]: Percent of the votes given to the political party called “Podemos” (Podemos_Votes)/TotalVotes*100 %

    12) Ciudadanos_Ptge [Float]: Percent of the votes given to the political party called “Ciudadanos” (Ciudadanos_Votes)/TotalVotes*100 %

    13) Others_Ptge [Float]: Percent of the votes given to the others political parties (∑▒MinoritaryVotes)/TotalVotes*100 %

    14) Age_0-4_Ptge [Float]: Percent of the populations which age is between 0 and 4 years old. It is calculated as follows: (Number of people in (0-4))/TotalPopulation*100 %

    15) Age_5-9_Ptge [Float]: Percent of the populations which age is between 5 and 9 year old.

    16) Age_10-14_Ptge [Float]: Percent of the populations which age is between 10 and 14 years old

    17) Age_15-19_Ptge [Float]: Percent of the populations which age is between 15 and 19 years old

    18) Age_20-24_Ptge [Float]: Percent of the populations which age is between 20 and 24 years old

    19) Age_25-29_Ptge [Float]: Percent of the populations which age is between 25 and 29 years old

    20) Age_30-34_Ptge [Float]: Percent of the populations which age is between 30 and 34 years old

    21) Age_35-39_Ptge [Float]: Percent of the populations which age is between 35 and 39 years old

    22) Age_40-44_Ptge [Float]: Percent of the populations which age is between 40 and 44 years old

    23) Age_45-49_Ptge [Float]: Percent of the populations which age is between 45 and 49 years old

    24) Age_50-54_Ptge [Float]: Percent of the populations which age is between 50 and 54 years old

    25) Age_55-59_Ptge [Float]: Percent of the populations which age is between 55 and 59 years old

    26) Age_60-64_Ptge [Float]: Percent of the populations which age is between 60 and 64 years old

    27) Age_65-69_Ptge [Float]: Percent of the populations which age is between 65 and 69 years old

    28) Age_70-74_Ptge [Float]: Percent of the populations which age is between 70 and 74 years old

    29) Age_75-79_Ptge [Float]: Percent of the populations which age is between 75 and 79 year old

    30) Age_80-84_Ptge [Float]: Percent of the populations which age is between 80 and 84 years old

    31) Age_85-89_Ptge [Float]: Percent of the populations which age is between 85 and 89 year old

    32) Age_90-94_Ptge [Float]: Percent of the populations which age is between 90 and 94 years old

    33) Age_95-99_Ptge [Float]: Percent of the populations which age is between 95 and 99 years old

    34) Age_100+_Ptge [Float]: Percent of the populations which is older than 100 years old.

    35) ManPopulationPtge [Float]: Percentage of masculine population in a region. Calculated as follows: ManPopulation/TotalPopulation*100

    36) WomanPopulationPtge [Float]: Percentage of masculine population in a region. Calculated as follows: WomanPopulation/TotalPopulation*100

    37) SpanishPtge [Float]: Percentage of people with spanish nationality in a region. Calculated as follows: NativeSpanishPopulation/TotalPopulation*100

    38) ForeignersPtge [Float]: Percentage of foreign people in a region. Calculated as follows: ForeignPopulation/TotalPopulation*100

    39) SameComAutonPtge [Float]: Percentage of people who live in the same autonomic community (same province) that was born. Calculated as follows: SameComAutonPopulation/TotalPopulation*100

    40) SameComAutonDiffProvPtge [Float]: Percentage of people who live in the same autonomic community (different province) that was born. Calculated as follows: SameComAutonDiffProvPopulation/TotalPopulation*100

    41) DifComAutonPtge [Float]: Percentage of people who live in different autonomic community that was born. Calculated as follows: SameComAutonDiffProvPopulation/TotalPopulation*100

    42) UnemployLess25_Ptge [Float]: Percent of unemployed people that are under 25 years and older than 18. It is calculated over the total amount of unemployment. (UnemploymentLess25_Man+ UnemploymentLess25_Woman)/TotalUnemployment*100

    43) Unemploy25_40_Ptge [Float]: Percent of unemployed people that are 25-40 years over the total amount of unemployment. (Unemployment(25-40)_Man+ Unemployment(25-40)_Woman )/TotalUnemployment*100

    44) UnemployMore40_Ptge [Float]: Percent of unemployed people that are older that 40 and younger than 69 years over the total amount of unemployment. (Unemployment(40-69)_Man+Unemployment(40-69)_Woman)/TotalUnemployment*100

    45) UnemployLess25_population_Ptge [Float]: Percent of unemployed people younger than 25 and older than 18, over the total population of the region. Note that the percent is calculated over the total population and not over the total active population. (UnemploymentLess25_Man+ UnemploymentLess25_Woman)/TotalPopulation*100

    46) Unemploy25_40_population_Ptge [Float]: Percent of unemployed people (25-40) years old, over the total population of the region. Note that the percent is calculated over the total population and not over the total active population. (Unemployment(25-40)_Man+ Unemployment(25-40)_Woman )/TotalPopulation*100

    47) UnemployMore40_population_Ptge [Float]: Percent of unemployed people (40-69) years old, over the total population of the region. Note that the percent is calculated over the total population and not over the total active population. (UnemploymentLess25_Man+ UnemploymentLess25_Woman)/TotalPopulation*100

    48) AgricultureUnemploymentPtge [Float]: Percent of unemployment in the agriculture sector relative to the total amount of unemployment. PeopleUnemployedInAgriculture/TotalUnemployment*100

    49) IndustryUnemploymentPtge [Float]: Percent of unemployment in the industry sector relative to the total amount of unemployment. PeopleUnemployedInIndustry/TotalUnemployment*100

    50) ConstructionUnemploymentPtge [Float]: Percent of unemployment in the construction sector relative to the total amount of unemployment. PeopleUnemployedInConstruction/TotalUnemployment*100

    51) ServicesUnemploymentPtge [Float]: Percent of unemployment in the services sector relative to the total amount of unemployment. PeopleUnemployedInServices/TotalUnemployment*100

    52) NotJobBeforeUnemploymentPtge [Float]: Percent of unemployment of people that didn’t have an employ before, over the total amount of unemployment. PeopleUnemployedWithoutEmployBefore/TotalUnemployment*100

    References:

    [1] Unemployment: www.datos.gob.es/es/catalogo/e00142804-paro-registrado-por-municipios

    [2] Age distribution per region Relation between Spanish and foreigners Relation between woman and man Relation between people born in the same area or different areas of Spain http://www.ine.es/dynt3/inebase/index.htm?type=pcaxis&file=pcaxis&path=%2Ft20%2Fe245%2Fp05%2F%2Fa2015

    [3] Congress elections result of Spanish election (June 2016) http://www.infoelectoral.interior.es/min/areaDescarga.html?method=inicio

  8. Share of people living in households with internet access in Czechia 2024,...

    • ai-chatbox.pro
    • statista.com
    Updated Jan 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Share of people living in households with internet access in Czechia 2024, by age [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F10177%2Finternet-usage-in-czechia%2F%23XgboD02vawLZsmJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Jan 27, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Czechia
    Description

    In the second quarter of 2024, 98 to 100 percent of people aged from 0 to 54 years had access to the internet in Czechia. This number dropped to 96.4 percent in the 55-64 age group, with further drops coming in the following age groups. The lowest percentage can be found with 75-year-olds and older, which amounted to 59.1 percent.

  9. Number of centenarians worldwide by gender 2000-2100

    • statista.com
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of centenarians worldwide by gender 2000-2100 [Dataset]. https://www.statista.com/statistics/996611/number-centenarians-worldwide-gender/
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In general, women live longer than men. As a result, the number of women aged 100 years or more worldwide is higher than that of men, and the gap is expected to continue to increase over the coming decades. It is estimated that there will be around 12.3 million female centenarians in 2100, compared to around 5.6 million males.

  10. Non-White Population in the US (Current ACS)

    • gis-for-racialequity.hub.arcgis.com
    Updated Jul 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Non-White Population in the US (Current ACS) [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/bd59d1d55f064d1b815997f4b6c7735f
    Explore at:
    Dataset updated
    Jul 2, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the percentage of people who identify as something other than non-Hispanic white throughout the US according to the most current American Community Survey. The pattern is shown by states, counties, and Census tracts. Zoom or search for anywhere in the US to see a local pattern. Click on an area to learn more. Filter to your area and save a new version of the map to use for your own mapping purposes.The Arcade expression used was: 100 - B03002_calc_pctNHWhiteE, which is simply 100 minus the percent of population who identifies as non-Hispanic white. The data is from the U.S. Census Bureau's American Community Survey (ACS). The figures in this map update automatically annually when the newest estimates are released by ACS. For more detailed metadata, visit the ArcGIS Living Atlas Layer: ACS Race and Hispanic Origin Variables - Boundaries.The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.Other maps of interest:American Indian or Alaska Native Population in the US (Current ACS)Asian Population in the US (Current ACS)Black or African American Population in the US (Current ACS)Hawaiian or Other Pacific Islander Population in the US (Current ACS)Hispanic or Latino Population in the US (Current ACS) (some people prefer Latinx)Population who are Some Other Race in the US (Current ACS)Population who are Two or More Races in the US (Current ACS) (some people prefer mixed race or multiracial)White Population in the US (Current ACS)Race in the US by Dot DensityWhat is the most common race/ethnicity?

  11. Healthy People 2020 Final Progress Table

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Healthy People 2020 Final Progress Table [Dataset]. https://catalog.data.gov/dataset/healthy-people-2020-final-progress-table-eef88
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    [1] Status is determined using the baseline, final, and target value. The statuses used in Healthy People 2020 were: 1 - Target met or exceeded—One of the following applies: (i) At baseline, the target was not met or exceeded, and the most recent value was equal to or exceeded the target. (The percentage of targeted change achieved was equal to or greater than 100%.); (ii) The baseline and most recent values were equal to or exceeded the target. (The percentage of targeted change achieved was not assessed.) 2 - Improved—One of the following applies: (i) Movement was toward the target, standard errors were available, and the percentage of targeted change achieved was statistically significant; (ii) Movement was toward the target, standard errors were not available, and the objective had achieved 10% or more of the targeted change. 3 - Little or no detectable change—One of the following applies: (i) Movement was toward the target, standard errors were available, and the percentage of targeted change achieved was not statistically significant; (ii) Movement was toward the target, standard errors were not available, and the objective had achieved less than 10% of the targeted change; (iii) Movement was away from the baseline and target, standard errors were available, and the percent change relative to the baseline was not statistically significant; (iv) Movement was away from the baseline and target, standard errors were not available, and the objective had moved less than 10% relative to the baseline; (v) No change was observed between the baseline and the final data point. 4 - Got worse—One of the following applies: (i) Movement was away from the baseline and target, standard errors were available, and the percent change relative to the baseline was statistically significant; (ii) Movement was away from the baseline and target, standard errors were not available, and the objective had moved 10% or more relative to the baseline. 5 - Baseline only—The objective only had one data point, so progress toward target attainment could not be assessed. Note that if additional data points did not meet the criteria for statistical reliability, data quality, or confidentiality, the objective was categorized as baseline only. 6 - Informational—A target was not set for this objective, so progress toward target attainment could not be assessed. [2] The final value is generally based on data available on the Healthy People 2020 website as of January 2020. For objectives that are continuing into Healthy People 2030, more recent data are available on the Healthy People 2030 website: https://health.gov/healthypeople. [3] For objectives that moved toward their targets, movement toward the target was measured as the percentage of targeted change achieved (unless the target was already met or exceeded at baseline): Percentage of targeted change achieved = (Final value - Baseline value) / (HP2020 target - Baseline value) * 100 [4] For objectives that were not improving, did not meet or exceed their targets, and did not move towards their targets, movement away from the baseline was measured as the magnitude of the percent change from baseline: Magnitude of percent change from baseline = |Final value - Baseline value| / Baseline value * 100 [5] Statistical significance was tested when the objective had a target, at least two data points (of unequal value), and available standard errors of the data. A normal distribution was assumed. All available digits were used to test statistical significance. Statistical significance of the percentage of targeted change achieved or the magnitude of the percentage change from baseline was assessed at the 0.05 level using a normal one-sided test. [6] For more information on the Healthy People 2020 methodology for measuring progress toward target attainment and the elimination of health disparities, see: Healthy People Statistical Notes, no 27; available from: https://www.cdc.gov/nchs/data/sta

  12. M

    World Birth Rate (1950-2025)

    • macrotrends.net
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Birth Rate (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/birth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    world, World
    Description
    World birth rate for 2025 is 17.13, a 0.95% decline from 2024.
    <ul style='margin-top:20px;'>
    
    <li>World birth rate for 2024 was <strong>17.30</strong>, a <strong>5.9% increase</strong> from 2023.</li>
    <li>World birth rate for 2023 was <strong>16.33</strong>, a <strong>1.34% decline</strong> from 2022.</li>
    <li>World birth rate for 2022 was <strong>16.56</strong>, a <strong>1.7% decline</strong> from 2021.</li>
    </ul>Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.
    
  13. a

    Food Access USDA

    • arc-garc.opendata.arcgis.com
    Updated Jun 16, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2015). Food Access USDA [Dataset]. https://arc-garc.opendata.arcgis.com/datasets/fc012a756cdb40f58ba28e3f534509d8
    Explore at:
    Dataset updated
    Jun 16, 2015
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer represents USDA Food Access Research Atlas data at the census tract geography. Low Income is defined as tracts with a poverty rate of 20% or higher, or tracts with median family income less than 80% of median family income of the state or metropolitan area. Low Access is defined as tracts where a significant number or share of residents is more than 1 mile (urban) or 10 miles (rural) from the nearest supermarket.http://www.ers.usda.gov/data-products/food-access-research-atlas/go-to-the-atlas.aspxFood accessLimited access to supermarkets, supercenters, grocery stores, or other sources of healthy and affordable food may make it harder for some Americans to eat a healthy diet. There are many ways to measure food store access for individuals and for neighborhoods, and many ways to define which areas are food deserts—neighborhoods that lack healthy food sources. Most measures and definitions take into account at least some of the following indicators of access:Accessibility to sources of healthy food, as measured by distance to a store or by the number of stores in an area.Individual-level resources that may affect accessibility, such as family income or vehicle availability.Neighborhood-level indicators of resources, such as the average income of the neighborhood and the availability of public transportation.In the Food Access Research Atlas, several indicators are available to measure food access along these dimensions. For example, users can choose alternative distance markers to measure low access in a neighborhood, such as the number and share of people more than half a mile to a supermarket or 1 mile to a supermarket. Users can also view other census-tract-level characteristics that provide context on food access in neighborhoods, such as whether the tract has a high percentage of households far from supermarkets and without vehicles, individuals with low income, or people residing in group quarters.Low-income neighborhoodsThe criteria for identifying a census tract as low income are from the Department of Treasury’s New Markets Tax Credit (NMTC) program. This program defines a low-income census tract as any tract where:The tract’s poverty rate is 20 percent or greater; orThe tract’s median family income is less than or equal to 80 percent of the State-wide median family income; orThe tract is in a metropolitan area and has a median family income less than or equal to 80 percent of the metropolitan area's median family income.Low-access census tractsIn the Food Access Research Atlas, low access to healthy food is defined as being far from a supermarket, supercenter, or large grocery store ("supermarket" for short). A census tract is considered to have low access if a significant number or share of individuals in the tract is far from a supermarket.In the original Food Desert Locator, low access was measured as living far from a supermarket, where 1 mile was used in urban areas and 10 miles was used in rural areas to demarcate those who are far from a supermarket. In urban areas, about 70 percent of the population was within 1 mile of a supermarket, while in rural areas over 90 percent of the population was within 10 miles (see Access to Affordable and Nutritious Food: Updated Estimates of Distance to Supermarkets Using 2010 Data). Updating the original 1- and 10-mile low-access measure shows that an estimated 18.3 million people in these low-income and low-access census tracts were far from a supermarket in 2010.Three additional measures of food access based on distance to a supermarket are provided in the Atlas:One additional measure applies a 0.5-mile demarcation in urban areas and a 10-mile distance in rural areas. Using this measure, an estimated 52.5 million people, or 17 percent of the U.S. population, have low access to a supermarket;A second measure applies a 1.0-mile demarcation in urban areas and a 20-mile distance in rural areas. Under this measure, an estimated 16.5 million people, or 5.3 percent of the U.S. population, have low access to a supermarket; andA slightly more complex measure incorporates vehicle access directly into the measure, delineating low-income tracts in which a significant number of households are located far from a supermarket and do not have access to a vehicle. This measure also includes census tracts with populations that are so remote, that, even with a vehicle, driving to a supermarket may be considered a burden due to the great distance. Using this measure, an estimated 2.1 million households, or 1.8 percent of all households, in low-income census tracts are far from a supermarket and do not have a vehicle. An additional 0.3 million people are more than 20 miles from a supermarket.For each of the first three measures that are based solely on distance, a tract is designated as low access if the aggregate number of people in the census tract with low access is at least 500 or the percentage of people in the census tract with low access is at least 33 percent. For the final measure using vehicle availability, a tract is designated as having low vehicle access if at least one of the following is true:at least 100 households are more than ½ mile from the nearest supermarket and have no access to a vehicle; orat least 500 people or 33 percent of the population live more than 20 miles from the nearest supermarket, regardless of vehicle access.Methods used to assess distance to the nearest supermarket are the same for each of these measures. First, the entire country is divided into ½-km square grids, and data on the population are aerially allocated to these grids (see Access to Affordable and Nutritious Food: Updated Estimates of Distance to Supermarkets Using 2010 Data). Then, distance to the nearest supermarket is measured for each grid cell by calculating the distance between the geographic center of the ½-km square grid that contains estimates of the population (number of people and other subgroup characteristics) and the center of the grid with the nearest supermarket.Once the distance to the nearest supermarket is calculated for each grid cell, the estimated number of people or housing units that are more than 1 mile from a supermarket in urban tracts, or 10 miles in rural census tracts, is aggregated at the census-tract level (and similarly for the alternative distance markers). A census tract is considered rural if the population-weighted centroid of that tract is located in an area with a population of less than 2,500; all other tracts are considered urban tracts.Food desertsThe Food Access Research Atlas maps census tracts that are both low income (li) and low access (la), as measured by the different distance demarcations. This tool provides researchers and other users multiple ways to understand the characteristics that can contribute to food deserts, including income level, distance to supermarkets, and vehicle access.Additional tract-level indicators of accessVehicle availabilityA tract is identified as having low vehicle availability if more than 100 households in the tract report having no vehicle available and are more than 0.5 miles from the nearest supermarket. This corresponds closely to the 80th percentile of the distribution of the number of housing units in a census tract without vehicles at least 0.5 miles from a supermarket (the 80th percentile value was 106 housing units). This means that about 20 percent of all census tracts had more than 100 housing units that were 0.5 miles from a supermarket and without a vehicle. This indicator was applied to both urban and rural census tracts.Overall, 8.8 percent of all housing units in the United States do not have a vehicle, and 4.2 percent of all housing units are at least 0.5 mile from a store and without a vehicle. Vehicle availability is defined in the American Community Survey as the number of passenger cars, vans, or trucks with a capacity of 1-ton or less kept at the home and available for use by household members. The number of available vehicles includes those vehicles leased or rented for at least 1 month, as well as company, police, or government vehicles that are kept at home and available for non-business use.Whether a vehicle is available to a household for private use is an important additional indicator of access to healthy and affordable food. For households living far from a supermarket or large grocery store, access to a private vehicle may make accessing these retailers easier than relying on public or alternative means of transportation.Group quarters populationUsers may be interested in highlighting tracts with large shares of people living in group quarters. Group quarters are residential arrangements where an entity or organization owns and provides housing (and often services) for individuals residing in these buildings. This includes college dormitories, military quarters, correctional facilities, homeless shelters, residential treatment centers, and assisted living or skilled nursing facilities. These living arrangements frequently provide dining and food retail solely for their residents. While individuals living in these areas may appear to be far from a supermarket or grocery store, they may not truly experience difficulty accessing healthy and affordable food. Tracts in which 67 percent of individuals or more live in group quarters are highlighted.General tract characteristicsPopulation, tract totalGeographic level: census tractYear of data: 2010Definition: Total number of individuals residing in a tract.Data sources: Data are from the 2012 report, Access to Affordable and Nutritious Food: Updated Estimates of Distances to Supermarkets Using 2010 Data. Population data are reported at the block level from the 2010 Census of Population and Housing. These data were aerially allocated down to ½-kilometer-square grids across the United States.Low-income tractGeographic level: census tractYear of data: 2010Definition: A tract with either a poverty rate of 20

  14. Decennial Census: 110th Congressional District Summary File (100-Percent)

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Decennial Census: 110th Congressional District Summary File (100-Percent) [Dataset]. https://catalog.data.gov/dataset/decennial-census-110th-congressional-district-summary-file-100-percent
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 110th Congressional District Summary File (100-percent) (110CD100) contains the 100- percent data, which is the information compiled from the questions asked of all people and about every housing unit. Population items include sex, age, race, Hispanic or Latino, household relationship, and group quarters. Housing items include occupancy status, vacancy status, and tenure (owner occupied or renter occupied). The file contains subject content identical to that shown in Summary File 1 (SF 1).

  15. d

    Voter Registration by Census Tract

    • catalog.data.gov
    • data.kingcounty.gov
    • +1more
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2025). Voter Registration by Census Tract [Dataset]. https://catalog.data.gov/dataset/voter-registration-by-census-tract
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    data.kingcounty.gov
    Description

    This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.

  16. U.S. number of people living below the poverty line 2023, by education

    • statista.com
    • ai-chatbox.pro
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. number of people living below the poverty line 2023, by education [Dataset]. https://www.statista.com/statistics/233168/number-of-people-living-below-the-poverty-line-in-the-us-by-education/
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, about 36.79 million Americans were living below the national poverty line in the United States. Of those Americans, around 4.04 million had a four-year degree or higher. This means they have an income below 100 percent of the national poverty level as defined by the U.S. Census Bureau.

  17. F

    Estimated Percent of People of All Ages in Poverty for United States

    • fred.stlouisfed.org
    json
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Estimated Percent of People of All Ages in Poverty for United States [Dataset]. https://fred.stlouisfed.org/series/PPAAUS00000A156NCEN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 20, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Estimated Percent of People of All Ages in Poverty for United States (PPAAUS00000A156NCEN) from 1989 to 2023 about percent, child, poverty, and USA.

  18. Share of women among people aged 100 years and older Japan 2003-2023

    • statista.com
    • ai-chatbox.pro
    Updated Feb 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of women among people aged 100 years and older Japan 2003-2023 [Dataset]. https://www.statista.com/statistics/1172785/japan-rate-women-centenarians/
    Explore at:
    Dataset updated
    Feb 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Japan
    Description

    In 2023, women made up about 88.5 percent of centenarians in Japan, indicating that the vast majority of people aged 100 years and older in the country were female. The share of women among centenarians peaked in the previous year at 88.6 percent.

  19. C

    Census 2011: Indicators by ACE census area

    • ckan.mobidatalab.eu
    csv, json
    Updated Apr 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technological and Digital Innovation Department (2023). Census 2011: Indicators by ACE census area [Dataset]. https://ckan.mobidatalab.eu/dataset/ds364-population-indicators-census-areas-2011c
    Explore at:
    json(315914), csv(158296)Available download formats
    Dataset updated
    Apr 23, 2023
    Dataset provided by
    Technological and Digital Innovation Department
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset contains 32 statistical indicators calculated on the basis of data from the 2011 census for the 86 census areas (ACE). The indicators are defined as follows: * 1) Population density (ratio between the resident population in the area and the surface of the area in square kilometres); * 2) Average age of the population (Average of the ages weighted by the amount of the population of each age); * 3) Population over 65 per child (ratio between the population aged 65 and over and children under 6); * 4) Very elderly per 100 residents (Percentage ratio between the population aged 85 and over and the total population); * 5) Population of inactive age per 100 residents of active age (Percentage ratio between the population of inactive age, 0-14 years and 65 years and over, and the population of working age, 15-64 years); * 6) Foreigners per 100 residents (Percentage ratio between the foreign population and the total population); * 7) Average age of foreigners (Average of ages weighted by the amount of the foreign population in each age group); * 8) Underage foreigners every 100 foreigners (Percentage ratio between the underage foreign population and the total foreign population); * 9) Young foreign students for every 100 young foreigners (15-24 years old) (Percentage ratio between the foreign student population aged 15-24 and the total foreign population aged 15-24); * 10) Foreign employment rate (Percentage ratio between employed foreigners aged 15 and over and the total number of foreigners in the same age group); * 11) Young people without a secondary school leaving certificate for every 100 young people (Percentage ratio between the population aged 15-19 with an educational qualification lower than the secondary school leaving certificate and the population aged 15-19); * 12) Young people with a secondary school leaving the school system before graduating every 100 young people (Percentage ratio between the population aged 15-24 who is not a student with a secondary school certificate as the highest educational qualification and the population aged 15-24); * 13) Active young people for every 100 inactive young people (Percentage ratio between the active and non-active population aged 15-24); * 14) Youth unemployment rate (Percentage ratio between young people aged 15-24 looking for a job and the active population aged 15-24); * 15) Activity rate (Percentage ratio between the active population aged 15 and over and the total population aged 15 and over); * 16) Employment rate (Percentage ratio between the employed population aged 15 and over and the total population aged 15 and over); * 17) Unemployment rate (percentage ratio between the population aged 15 and over looking for work and the active population aged 15 and over); * 18) Diplomas or graduates every adult with only a middle school leaving certificate (ratio between the resident population aged 25-64 with a diploma or degree and the resident population of the same age group with a middle school leaving certificate); * 19) University-educated young adults per 100 young adults (Percentage ratio between the population aged 30-34 with a university degree and the total population aged 30-34; target of the Europe 2020 Strategy); * 20) Young people who do not work or study every 100 young people (Percentage ratio between the population aged 15-29 who is neither student nor employed and the total population aged 15-29); * 21) Owned homes for every 100 homes occupied by residents (Percentage ratio between the number of owned homes occupied by residents and the total number of homes occupied by residents); * 22) Rental homes for every 100 homes occupied by residents (Percentage ratio between the number of homes occupied by rented residents and the total homes occupied by residents); * 23) Average size of homes (ratio between the total area (m2) of homes occupied by residents and the total number of homes occupied by residents); * 24) Average number of members per family (ratio between the total number of residents in the family and the number of families); * 25) Families with only one member every 100 families (Percentage ratio between the number of one-member families and the total number of families); * 26) Families with 5 or more members every 100 families (Percentage ratio between the number of families with 5 or more members and the total number of families); * 27) Young couples with children for every 100 young couples (Percentage ratio between the number of young couples with children and the total number of young couples; both members of the couple less than 35 years old); * 28) Young people living alone for every 100 young people (Percentage ratio between the number of one-person households, without cohabitants, made up of a person aged 15-34 and the total population aged 15-34); * 29) Over 65-year-old population living alone every 100 over 65-year-olds (Percentage ratio between the number of one-person households, without cohabitants, made up of a person aged 65+ and the population aged 65+); * 30) Mixed couples every 100 couples (Percentage ratio between the number of couples with one foreign and one Italian component and the total number of couples); * 31) Unmarried couples every 100 couples (Percentage ratio between the number of unmarried couples and the total number of couples); * 32) Single-parent households for every 100 households with children (Percentage ratio between the number of single-parent households and the total of households with children). This dataset was released by the municipality of Milan.

  20. t

    Group layer: Climate analysis - Percentage of population affected by climate...

    • service.tib.eu
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Group layer: Climate analysis - Percentage of population affected by climate change - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/govdata_9b0c412d-61b8-4a27-97cb-50c0ac8a558d
    Explore at:
    Dataset updated
    Feb 5, 2025
    Description

    In the Climate Analysis NRW, the climatic situation in NRW is recorded, presented and the (thermally) polluted settlement areas (= impact areas) are identified and demarcated from corresponding compensation areas and evaluated. The climate analysis was carried out in accordance with VDI guideline 3787, sheet 1. The ‘Population affected’ map shows the percentage of people per municipality who, according to the climate analysis, live in areas with an ‘unfavourable thermal situation’ or a ‘very unfavourable thermal situation’. The ‘Population affected’ map also takes into account the areas that are distinguished as climate change prevention areas in the climate analysis. The population figures are based on the population data from the 2011 ZENSUS survey, which are available in a resolution of 100 m × 100 m and were interspersed with the polluted areas.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Number of centenarians worldwide 2000-2100 [Dataset]. https://www.statista.com/statistics/996597/number-centenarians-worldwide/
Organization logo

Number of centenarians worldwide 2000-2100

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 25, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
Worldwide
Description

The number of people aged 100 years or more (centenarians) worldwide is expected to increase significantly over the coming decades. While there were only ******* centenarians in 2000, this number is predicted to increase to over **** million by 2100. As people on the planet live longer, global life expectancy increases.

Search
Clear search
Close search
Google apps
Main menu