Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Facebook
TwitterIn 2019, the percentage of the U.S. population aged 65 and over who then had (or ever before had) cancer was **** percent. This statistic depicts the percentage of the U.S. population who has (or ever had) cancer between 1997 and 2019, by age group.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset contains 2 .csv files This file contains various demographic and health-related data for different regions. Here's a brief description of each column:
avganncount: Average number of cancer cases diagnosed annually.
avgdeathsperyear: Average number of deaths due to cancer per year.
target_deathrate: Target death rate due to cancer.
incidencerate: Incidence rate of cancer.
medincome: Median income in the region.
popest2015: Estimated population in 2015.
povertypercent: Percentage of population below the poverty line.
studypercap: Per capita number of cancer-related clinical trials conducted.
binnedinc: Binned median income.
medianage: Median age in the region.
pctprivatecoveragealone: Percentage of population covered by private health insurance alone.
pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.
pctpubliccoverage: Percentage of population covered by public health insurance.
pctpubliccoveragealone: Percentage of population covered by public health insurance only.
pctwhite: Percentage of White population.
pctblack: Percentage of Black population.
pctasian: Percentage of Asian population.
pctotherrace: Percentage of population belonging to other races.
pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.
This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:
statefips: The FIPS code representing the state.
countyfips: The FIPS code representing the county or census area within the state.
avghouseholdsize: The average household size in the region.
geography: The geographical location, typically represented as the county or census area name followed by the state name.
Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.
Facebook
TwitterCancer survival statistics are typically expressed as the proportion of patients alive at some point subsequent to the diagnosis of their cancer. Statistics compare the survival of patients diagnosed with cancer with the survival of people in the general population who are the same age, race, and sex and who have not been diagnosed with cancer.
Facebook
TwitterNorth America had the highest 12-month cancer prevalence rate in 2022. The 12-month prevalence rate for all cancers in North America as of this time was 595 per 100,000 population. This statistic displays 12-month cancer prevalence rates worldwide in 2022, by region.
Facebook
TwitterNumber and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Facebook
TwitterCancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.
Facebook
TwitterBy Noah Rippner [source]
This dataset offers a unique opportunity to examine the pattern and trends of county-level cancer rates in the United States at the individual county level. Using data from cancer.gov and the US Census American Community Survey, this dataset allows us to gain insight into how age-adjusted death rate, average deaths per year, and recent trends vary between counties – along with other key metrics like average annual counts, met objectives of 45.5?, recent trends (2) in death rates, etc., captured within our deep multi-dimensional dataset. We are able to build linear regression models based on our data to determine correlations between variables that can help us better understand cancers prevalence levels across different counties over time - making it easier to target health initiatives and resources accurately when necessary or desired
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This kaggle dataset provides county-level datasets from the US Census American Community Survey and cancer.gov for exploring correlations between county-level cancer rates, trends, and mortality statistics. This dataset contains records from all U.S counties concerning the age-adjusted death rate, average deaths per year, recent trend (2) in death rates, average annual count of cases detected within 5 years, and whether or not an objective of 45.5 (1) was met in the county associated with each row in the table.
To use this dataset to its fullest potential you need to understand how to perform simple descriptive analytics which includes calculating summary statistics such as mean, median or other numerical values; summarizing categorical variables using frequency tables; creating data visualizations such as charts and histograms; applying linear regression or other machine learning techniques such as support vector machines (SVMs), random forests or neural networks etc.; differentiating between supervised vs unsupervised learning techniques etc.; reviewing diagnostics tests to evaluate your models; interpreting your findings; hypothesizing possible reasons and patterns discovered during exploration made through data visualizations ; Communicating and conveying results found via effective presentation slides/documents etc.. Having this understanding will enable you apply different methods of analysis on this data set accurately ad effectively.
Once these concepts are understood you are ready start exploring this data set by first importing it into your visualization software either tableau public/ desktop version/Qlikview / SAS Analytical suite/Python notebooks for building predictive models by loading specified packages based on usage like Scikit Learn if Python is used among others depending on what tool is used . Secondly a brief description of the entire table's column structure has been provided above . Statistical operations can be carried out with simple queries after proper knowledge of basic SQL commands is attained just like queries using sub sets can also be performed with good command over selecting columns while specifying conditions applicable along with sorting operations being done based on specific attributes as required leading up towards writing python codes needed when parsing specific portion of data desired grouping / aggregating different categories before performing any kind of predictions / models can also activated create post joining few tables possible , when ever necessary once again varying across tools being used Thereby diving deep into analyzing available features determined randomly thus creating correlation matrices figures showing distribution relationships using correlation & covariance matrixes , thus making evaluations deducing informative facts since revealing trends identified through corresponding scatter plots from a given metric gathered from appropriate fields!
- Building a predictive cancer incidence model based on county-level demographic data to identify high-risk areas and target public health interventions.
- Analyzing correlations between age-adjusted death rate, average annual count, and recent trends in order to develop more effective policy initiatives for cancer prevention and healthcare access.
- Utilizing the dataset to construct a machine learning algorithm that can predict county-level mortality rates based on socio-economic factors such as poverty levels and educational attainment rates
If you use this dataset i...
Facebook
TwitterInformation about the rates of cancer deaths in each state is reported. The data shows the total rate as well as rates based on sex, age, and race. Rates are also shown for three specific kinds of cancer: breast cancer, colorectal cancer, and lung cancer.
| Key | List of... | Comment | Example Value |
|---|---|---|---|
| State | String | The name of a U.S. State (e.g., Virginia) | "Alabama" |
| Total.Rate | Float | Total Cancer Deaths (Rate per 100,000 Population, 2007-2013) 214.2 | 214.2 |
| Total.Number | Float | Total Cancer Deaths (2007-2013) | 71529.0 |
| Total.Population | Float | Cumulative Population (Denominator Total_Cancer deaths total_) 2007-2013 | 33387205.0 |
| Rates.Age.< 18 | Float | Total Cancer Deaths (Under 18 Years, Rate per 100,000 Population, 2007-2013) | 2.0 |
| Rates.Age.18-45 | Float | Total Cancer Deaths (18 to 44 Years, Rate per 100,000 Population, 2007-2013) | 18.5 |
| Rates.Age.45-64 | Float | Total Cancer Deaths (45 to 64 Years, Rate per 100,000 Population, 2007-2013) | 244.7 |
| Rates.Age.> 64 | Float | Total Cancer Deaths (65 Years and Over, Rate per 100,000 Population, 2007-2013) | 1017.8 |
| Rates.Age and Sex.Female.< 18 | Float | Female under 18 | 2.0 |
| Rates.Age and Sex.Male.< 18 | Float | Male under 18 | 2.1 |
| Rates.Age and Sex.Female.18 - 45 | Float | Female 18 - 45 | 20.1 |
| Rates.Age and Sex.Male.18 - 45 | Float | Male 18 - 45 | 16.8 |
| Rates.Age and Sex.Female.45 - 64 | Float | Female 45 to 64 Years | 201.0 |
| Rates.Age and Sex.Male.45 - 64 | Float | Male 45 to 64 Years | 291.5 |
| Rates.Age and Sex.Female.> 64 | Float | Female 65 Years and Over | 803.6 |
| Rates.Age and Sex.Male.> 64 | Float | Male 65 Years and Over | 1308.6 |
| Rates.Race.White | Float | Total Cancer Deaths (White, Rate per 100,000 Population, 2007-2013) | 186.1 |
| Rates.Race.White non-Hispanic | Float | Total Cancer Deaths (White non-Hispanic, Rate per 100,000 Population, 2007-2013) | 187.5 |
| Rates.Race.Black | Float | Total Cancer Deaths (Black or African American, Rate per 100,000 Population, 2007-2013) | 216.1 |
| Rates.Race.Asian | Float | Total Cancer Deaths (Asian or Pacific Islander, Rate per 100,000 Population, 2007-2013) | 81.3 |
| Rates.Race.Indigenous | Float | Total Cancer Deaths (American Indian or Alaska Native, Rate per 100,000 Population, 2007-2013) | 69.9 |
| Rates.Race and Sex.Female.White | Float | Female: White | 149.2 |
| Rates.Race and Sex.Female.White non-Hispanic | Float | Female: White non-Hispanic | 150.2 |
| Rates.Race and Sex.Female.Black | Float | Female: Black or African American | 167.2 |
| Rates.Race and Sex.Female.Black non-Hispanic | Float | Female: Black or African American non-Hispanic | 167.9 |
| Rates.Race and Sex.Female.Asian | Float | Female: Asian or Pacific Islander | 84.9 |
| Rates.Race and Sex.Female.Indigenous | Float | Female: American Indian or Alaska Native | 53.8 |
| ... |
Facebook
TwitterCancer Rates for Lake County Illinois. Explanation of field attributes: Colorectal Cancer - Cancer that develops in the colon (the longest part of the large intestine) and/or the rectum (the last several inches of the large intestine). This is a rate per 100,000. Lung Cancer – Cancer that forms in tissues of the lung, usually in the cells lining air passages. This is a rate per 100,000. Breast Cancer – Cancer that forms in tissues of the breast. This is a rate per 100,000. Prostate Cancer – Cancer that forms in tissues of the prostate. This is a rate per 100,000. Urinary System Cancer – Cancer that forms in the organs of the body that produce and discharge urine. These include the kidneys, ureters, bladder, and urethra. This is a rate per 100,000. All Cancer – All cancers including, but not limited to: colorectal cancer, lung cancer, breast cancer, prostate cancer, and cancer of the urinary system. This is a rate per 100,000.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This release summarises the diagnoses in 2019 registered by NDRS covering all registerable neoplasms (all cancers, all in situ tumours, some benign tumours and all tumours that have uncertain or unknown behaviours)
Facebook
TwitterThis table contains 600 series, with data for years 1997 - 1997 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (15 items: Canada; Prince Edward Island; Newfoundland and Labrador; Nova Scotia ...), Sex (3 items: Both sexes; Females; Males ...), Selected sites of cancer (ICD-9) (4 items: Colorectal cancer; Prostate cancer; Lung cancer; Female breast cancer ...), Characteristics (5 items: Relative survival rate for cancer; High 95% confidence interval; relative survival rate for cancer; Number of cases; Low 95% confidence interval; relative survival rate for cancer ...).
Facebook
TwitterThis publication sets out and comments on stage at cancer diagnosis in Clinical Commissioning Groups in England for patients diagnosed in the period 2013 to 2018. Proportion of cancers diagnosed at an early stage are presented unadjusted and adjusted for case-mix (age, sex, cancer site and socio-economic deprivation). Supporting data quality and stage completeness are presented for persons diagnosed 2001 to 2018.
The 21 cancer groups are defined as those with 1,500 cancers diagnosed annually in England and 70% staging completeness.
The statistics are obtained from the National Cancer Registration Dataset that is collected, quality assured and analysed by the National Cancer Registration and Analysis Service, part of Public Health England.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)
Facebook
TwitterThis is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated on 8/14/2024 Cancer Mortality Rate - This indicator shows the age-adjusted mortality rate from cancer (per 100,000 population). Maryland’s age adjusted cancer mortality rate is higher than the US cancer mortality rate. Cancer impacts people across all population groups, however wide racial disparities exist. Link to Data Details
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.
Facebook
TwitterSUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Facebook
TwitterSEER Limited-Use cancer incidence data with associated population data. Geographic areas available are county and SEER registry. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and distributes high quality, comprehensive cancer data from a number of population-based cancer registries. Data include patient demographics, primary tumor site, morphology, stage at diagnosis, first course of treatment, and follow-up for vital status. The SEER Program is the only comprehensive source of population-based information in the United States that includes stage of cancer at the time of diagnosis and survival rates within each stage.
Facebook
TwitterNumber and rate of new cancer cases by stage at diagnosis from 2011 to the most recent diagnosis year available. Included are colorectal, lung, breast, cervical and prostate cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Facebook
TwitterThe United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.