Facebook
TwitterThe 2006 Second Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2006 Second Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. This shapefile represents the current State Senate Districts for New Mexico as posted on the Census Bureau website for 2006.
Facebook
TwitterA. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.
The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.
The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco.
When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:
• The person was not asked about their race and ethnicity.
• The person was asked, but refused to answer.
• The person answered, but the testing provider did not include the person's answers in the reports.
• The testing provider reported the person's answers in a format that could not be used by the health department.
For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”
B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."
The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.”
If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value i
Facebook
TwitterThe New Mexico 2000 Unified School Districts layer was derived from the TIGER Line files from the US Census Bureau. The districts are clipped to the state boundaries, and available for download from the website.
Facebook
TwitterTIGER, TIGER/Line, and Census TIGER are registered trademarks of the Bureau of the Census. The Redistricting Census 2000 TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER data base. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on January 1, 2000 legal boundaries. A complete set of Redistricting Census 2000 TIGER/Line files includes all counties and statistically equivalent entities in the United States and Puerto Rico. The Redistricting Census 2000 TIGER/Line files will not include files for the Island Areas. The Census TIGER data base represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The Redistricting Census 2000 TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. The Redistricting Census 2000 TIGER/Line files do NOT contain the ZIP Code Tabulation Areas (ZCTAs) and the address ranges are of approximately the same vintage as those appearing in the 1999 TIGER/Line files. That is, the Census Bureau is producing the Redistricting Census 2000 TIGER/Line files in advance of the computer processing that will ensure that the address ranges in the TIGER/Line files agree with the final Master Address File (MAF) used for tabulating Census 2000. The files contain information distributed over a series of record types for the spatial objects of a county. There are 17 record types, including the basic data record, the shape coordinate points, and geographic codes that can be used with appropriate software to prepare maps. Other geographic information contained in the files includes attributes such as feature identifiers/census feature class codes (CFCC) used to differentiate feature types, address ranges and ZIP Codes, codes for legal and statistical entities, latitude/longitude coordinates of linear and point features, landmark point features, area landmarks, key geographic features, and area boundaries. The Redistricting Census 2000 TIGER/Line data dictionary contains a complete list of all the fields in the 17 record types.
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
The following data set is information obtained about counties in the United States from 2010 through 2019 through the United States Census Bureau. Information described in the data includes the age distributions, the education levels, employment statistics, ethnicity percents, houseold information, income, and other miscellneous statistics. (Values are denoted as -1, if the data is not available)
| Key | List of... | Comment | Example Value |
|---|---|---|---|
| County | String | County name | "Abbeville County" |
| State | String | State name | "SC" |
| Age.Percent 65 and Older | Float | Estimated percentage of population whose ages are equal or greater than 65 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico). | 22.4 |
| Age.Percent Under 18 Years | Float | Estimated percentage of population whose ages are under 18 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico). | 19.8 |
| Age.Percent Under 5 Years | Float | Estimated percentage of population whose ages are under 5 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico). | 4.7 |
| Education.Bachelor's Degree or Higher | Float | Percentage for the people who attended college but did not receive a degree and people who received an associate's bachelor's master's or professional or doctorate degree. These data include only persons 25 years old and over. The percentages are obtained by dividing the counts of graduates by the total number of persons 25 years old and over. Tha data is collected from 2015 to 2019. | 15.6 |
| Education.High School or Higher | Float | Percentage of people whose highest degree was a high school diploma or its equivalent people who attended college but did not receive a degree and people who received an associate's bachelor's master's or professional or doctorate degree. These data include only persons 25 years old and over. The percentages are obtained by dividing the counts of graduates by the total number of persons 25 years old and over. Tha data is collected from 2015 to 2019 | 81.7 |
| Employment.Nonemployer Establishments | Integer | An establishment is a single physical location at which business is conducted or where services or industrial operations are performed. It is not necessarily identical with a company or enterprise which may consist of one establishment or more. The data was collected from 2018. | 1416 |
| Ethnicities.American Indian and Alaska Native Alone | Float | Estimated percentage of population having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment. This category includes people who indicate their race as "American Indian or Alaska Native" or report entries such as Navajo Blackfeet Inupiat Yup'ik or Central American Indian groups or South American Indian groups. | 0.3 |
| Ethnicities.Asian Alone | Float | Estimated percentage of population having origins in any of the original peoples of the Far East Southeast Asia or the Indian subcontinent including for example Cambodia China India Japan Korea Malaysia Pakistan the Philippine Islands Thailand and Vietnam. This includes people who reported detailed Asian responses such as: "Asian Indian " "Chinese " "Filipino " "Korean " "Japanese " "Vietnamese " and "Other Asian" or provide other detailed Asian responses. | 0.4 |
| Ethnicities.Black Alone | Float | Estimated percentage of population having origins in any of the Black racial groups of Africa. It includes people who indicate their race as "Black or African American " or report entries such as African American Kenyan Nigerian or Haitian. | 27.6 |
| Ethnicities.Hispanic or Latino | Float |
Facebook
TwitterThe statistic shows the share of U.S. population, by race and Hispanic origin, in 2016 and a projection for 2060. As of 2016, about 17.79 percent of the U.S. population was of Hispanic origin. Race and ethnicity in the U.S. For decades, America was a melting pot of the racial and ethnical diversity of its population. The number of people of different ethnic groups in the United States has been growing steadily over the last decade, as has the population in total. For example, 35.81 million Black or African Americans were counted in the U.S. in 2000, while 43.5 million Black or African Americans were counted in 2017.
The median annual family income in the United States in 2017 earned by Black families was about 50,870 U.S. dollars, while the average family income earned by the Asian population was about 92,784 U.S. dollars. This is more than 15,000 U.S. dollars higher than the U.S. average family income, which was 75,938 U.S. dollars.
The unemployment rate varies by ethnicity as well. In 2018, about 6.5 percent of the Black or African American population in the United States were unemployed. In contrast to that, only three percent of the population with Asian origin was unemployed.
Facebook
TwitterUse this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File.
White – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.
Black or African American – A person having origins in any of the Black racial groups of Africa.
American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.
Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.
Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.
Some Other Race - this category is chosen by people who do not identify with any of the categories listed above.
People can identify with more than one race. These people are included in the Two or More Races
Facebook
TwitterIn 2024, there were 301,623 cases filed by the National Crime Information Center (NCIC) where the race of the reported missing person was white. In the same year, 17,097 people whose race was unknown were also reported missing in the United States. What is the NCIC? The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide. Missing people in the United States A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Person County by race. It includes the distribution of the Non-Hispanic population of Person County across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Person County across relevant racial categories.
Key observations
Of the Non-Hispanic population in Person County, the largest racial group is White alone with a population of 25,433 (68.79% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Person County Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterThis dataset includes race/ethnicity of newly Medi-Cal eligible individuals who identified their race/ethnicity as Hispanic, White, Other Asian or Pacific Islander, Black, Chinese, Filipino, Vietnamese, Asian Indian, Korean, Alaskan Native or American Indian, Japanese, Cambodian, Samoan, Laotian, Hawaiian, Guamanian, Amerasian, or Other, by reporting period. The race/ethnicity data is from the Medi-Cal Eligibility Data System (MEDS) and includes eligible individuals without prior Medi-Cal Eligibility. This dataset is part of the public reporting requirements set forth in California Welfare and Institutions Code 14102.5.
Facebook
TwitterThe 2006 Second Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2006 Second Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. This shapefile represents the current State House Districts for New Mexico as posted on the Census Bureau website for 2006.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We provide datasets that that estimate the racial distributions associated with first, middle, and last names in the United States. The datasets cover five racial categories: White, Black, Hispanic, Asian, and Other. The provided data are computed from the voter files of six Southern states -- Alabama, Florida, Georgia, Louisiana, North Carolina, and South Carolina -- that collect race and ethnicity data upon registration. We include seven voter files per state, sourced between 2018 and 2021 from L2, Inc. Together, these states have approximately 36MM individuals who provide self-reported race and ethnicity. The last name datasets includes 338K surnames, while the middle name dictionaries contains 126K middle names and the first name datasets includes 136K first names. For each type of name, we provide a dataset of P(race | name) probabilities and P(name | race) probabilities. We include only names that appear at least 25 times across the 42 (= 7 voter files * 6 states) voter files in our dataset. These data are closely related to the the dataset: "Name Dictionaries for "wru" R Package", https://doi.org/10.7910/DVN/7TRYAC. These are the probabilities used in the latest iteration of the "WRU" package (Khanna et al., 2022) to make probabilistic predictions about the race of individuals, given their names and geolocations.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Not Hispanic or Latino, Two or More Races, Two Races Including Some Other Race (5-year estimate) in Philadelphia County, PA (B03002010E042101) from 2009 to 2023 about Philadelphia, latino, non-hispanic, PA, estimate, 5-year, persons, population, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Person County by race. It includes the population of Person County across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Person County across relevant racial categories.
Key observations
The percent distribution of Person County population by race (across all racial categories recognized by the U.S. Census Bureau): 66.72% are white, 25.90% are Black or African American, 0.42% are American Indian and Alaska Native, 0.48% are Asian, 0.01% are Native Hawaiian and other Pacific Islander, 2.27% are some other race and 4.20% are multiracial.
https://i.neilsberg.com/ch/person-county-nc-population-by-race.jpeg" alt="Person County population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Person County Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterHow racially diverse are residents in Massachusetts? This topic shows the demographic breakdown of residents by race/ethnicity and the increases in the Non-white population since 2010.
Facebook
TwitterRace is a social and historical construct, and the racial categories counted by the census change over time so the process of constructing stable racial categories for these 50 years out of census data required complex and imperfect decisions. Here we have used historical research on early 20th century southern California to construct historic racial categories from the IPUMS full count data, which allows us to track groups that were not formally classified as racial groups in some census decades like Mexican, but which were important racial categories in southern California. Detailed explanation of how we constructed these categories and the rationale we used for the decisions we made can be found here. Layers are symbolized to show the percentage of each of the following groups from 1900-1940:AmericanIndian Not-Hispanic, AmericanIndian Hispanic, Black non-Hispanic, Black-Hispanic, Chinese, Korean, Filipino and Japanese, Mexican, Hispanic Not-Mexican, white non-Hispanic. The IPUMS Census data is messy and includes some errors and undercounts, making it hard to map some smaller populations, like Asian Indians (in census called Hindu in 1920) and creating a possible undercount of Native American populations. The race data mapped here also includes categories that may not have been socially meaningful at the time like Black-Hispanic, which generally would represent people from Mexico who the census enumerator classified as Black because of their dark skin, but who were likely simply part of Mexican communities at the time. We have included maps of the Hispanic not-Mexican category which shows very small numbers of non-Mexican Hispanic population, and American Indian Hispanic, which often captures people who would have been listed as Indian in the census, probably because of skin color, but had ancestry from Mexico (or another Hispanic country). This category may include some indigenous Californians who married into or assimilated into Mexican American communities in the early 20th century. If you are interested in mapping some of the other racial or ethnic groups in the early 20th century, you can explore and map the full range of variables we have created in the People's History of the IE IE_ED1900-1940 Race Hispanic Marriage and Age Feature layer.Suggested Citation: Tilton, Jennifer. People's History Race Ethnicity Dot Density Map 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. 2025Feature Layer CitationTilton, Jennifer, Tessa VanRy & Lisa Benvenuti. Race and Demographic Data 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. Additional contributing authors: Mackenzie Nelson, Will Blach & Andy Garcia Funding provided by: People’s History of the IE: Storyscapes of Race, Place, and Queer Space in Southern California with funding from NEH-SSRC Grant 2022-2023 & California State Parks grant to Relevancy & History. Source for Census Data 1900- 1940 Ruggles, Steven, Catherine A. Fitch, Ronald Goeken, J. David Hacker, Matt A. Nelson, Evan Roberts, Megan Schouweiler, and Matthew Sobek. IPUMS Ancestry Full Count Data: Version 3.0 [dataset]. Minneapolis, MN: IPUMS, 2021. Primary Sources for Enumeration District Linework 1900-1940 Steve Morse provided the full list of transcribed EDs for all 5 decades "United States Enumeration District Maps for the Twelfth through the Sixteenth US Censuses, 1900-1940." Images. FamilySearch. https://FamilySearch.org: 9 February 2023. Citing NARA microfilm publication A3378. Washington, D.C.: National Archives and Records Administration, 2003. BLM PLSS Map Additional Historical Sources consulted include: San Bernardino City Annexation GIS Map Redlands City Charter Proposed with Ward boundaries (Not passed) 1902. Courtesy of Redlands City Clerk. Redlands Election Code Precincts 1908, City Ordinances of the City of Redlands, p. 19-22. Courtesy of Redlands City Clerk Riverside City Charter 1907 (for 1910 linework) courtesy of Riverside City Clerk. 1900-1940 Raw Census files for specific EDs, to confirm boundaries when needed, accessed through Family Search. If you have additional questions or comments, please contact jennifer_tilton@redlands.edu.
Facebook
TwitterThis map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?
Facebook
TwitterIn 2023, over **** million Hispanics and Latinos were employed throughout the United States. Comparatively, ****** million Americans were employed in total in that same year.
Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
I applied bits of text mining, natural langauge processing, and data science to a pair of annual editions of Race and Ethnic Relations, and below is a summary of what I learned.
Facebook
TwitterThe 2006 Second Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2006 Second Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. This shapefile represents the current State Senate Districts for New Mexico as posted on the Census Bureau website for 2006.