Facebook
TwitterThis statistic shows the total number of drugs in the R&D pipeline worldwide from 2001 to 2025. In 2001, there were ***** drugs in the R&D pipeline, whereas there were ****** drugs in the pipeline in January 2025.
Facebook
TwitterOne of the key requirements for incorporating machine learning (ML) into the drug discovery process is complete traceability and reproducibility of the model building and evaluation process. With this in mind, we have developed an end-to-end modular and extensible software pipeline for building and sharing ML models that predict key pharma-relevant parameters. The ATOM Modeling PipeLine, or AMPL, extends the functionality of the open source library DeepChem and supports an array of ML and molecular featurization tools. We have benchmarked AMPL on a large collection of pharmaceutical data sets covering a wide range of parameters. Our key findings indicate that traditional molecular fingerprints underperform other feature representation methods. We also find that data set size correlates directly with prediction performance, which points to the need to expand public data sets. Uncertainty quantification can help predict model error, but correlation with error varies considerably between data sets and model types. Our findings point to the need for an extensible pipeline that can be shared to make model building more widely accessible and reproducible. This software is open source and available at: https://github.com/ATOMconsortium/AMPL.
Facebook
TwitterSuccess.ai’s Pharma Data for the Global Pharmaceutical Industry provides a robust dataset tailored for businesses looking to connect with pharmaceutical companies, decision-makers, and key stakeholders worldwide. Covering pharmaceutical manufacturers, research organizations, biotech firms, and distributors, this dataset offers verified SIC codes, firmographic details, and contact information for executives and operational leads.
With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach, market research, and business development strategies are driven by reliable, continuously updated, and AI-validated data. Supported by our Best Price Guarantee, this solution is essential for navigating the competitive global pharmaceutical landscape.
Why Choose Success.ai’s Pharma Data?
Verified Contact Data for Precision Outreach
Comprehensive Coverage of the Global Pharmaceutical Sector
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Decision-Maker Profiles in Pharmaceuticals
Advanced Filters for Precision Targeting
SIC Codes and Firmographic Insights
AI-Driven Enrichment
Strategic Use Cases:
Sales and Lead Generation
Market Research and Product Development
Partnership and Supply Chain Development
Regulatory Compliance and Risk Mitigation
Why Choose Success.ai?
Facebook
TwitterA database providing information about compounds under investigation for therapeutic use. There are currently 44 compounds on record with 100 compounds in the process of being uploaded to the database.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
100 random FORESEE pipelines were chosen and then trained on all 266 available drugs in the GDSC database to predict the patient data sets. (XLSX)
Facebook
Twitterhttps://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/
Drug Delivery Infusion Systems are used to administer medication to a patient in critical care, emergency care, home care and trauma centers. GlobalData's Medical Devices sector report, “Drug Delivery Infusion Systems – Medical Devices Pipeline Assessment, 2016' provides comprehensive information about the Drug Delivery Infusion Systems pipeline products with comparative analysis of the products at various stages of development and information about the clinical trials which are in progress. The Drug Delivery Infusion Systems Pipeline Assessment report provides key information and data related to: Extensive coverage of the Drug Delivery Infusion Systems under development Review details of major pipeline products which include product description, licensing and collaboration details and other developmental activities including pipeline territories, regulatory paths and estimated approval dates Reviews of major players involved in the pipeline product development. Provides key clinical trial data related to ongoing clinical trials such as trial phase, trial status, trial start and end dates, and, the number of trials of the major Drug Delivery Infusion Systems pipeline products. Review of Recent Developments in the segment / industry The Drug Delivery Infusion Systems Pipeline Assessment report enables you to: Access significant competitor information, analysis, and insights to improve your R&D strategies Identify emerging players with potentially strong product portfolio and create effective counter-strategies to gain competitive advantage Identify and understand important and diverse types of Drug Delivery Infusion Systems under development Formulate market-entry and market expansion strategies Plan mergers and acquisitions effectively by identifying major players with the most promising pipeline The major companies covered in the “Drug Delivery Infusion Systems – Medical Devices Pipeline Assessment, 2016” report: 410 Medical Innovation, LLC Acuros GmbH AktiVax Inc. Alnylam Pharmaceuticals, Inc. Anesthesia Safety Products, LLC AngioDynamics, Inc. Automedics Medical Systems Baxter International Inc. BioCardia, Inc. Debiotech S.A. Delpor, Inc. Edwards Lifesciences Corporation Eksigent Technologies, LLC Eli Lilly and Company Flowonix Medical, Inc. FluidSynchrony, LLC Fluonic, Inc. Fresenius Kidney Care Imagnus Biomedical Inc. Innovfusion Pte. Ltd. Intarcia Therapeutics, Inc. IRadimed Corporation Ivenix, Inc. LifeMedix, LLC Lynntech, Inc. Medallion Therapeutics, Inc. Medical Device Creations Ltd. MedPrime Technologies Pvt. Ltd. Mercator MedSystems, Inc. Nano Precision Medical NexGen Medical Systems, Inc. Nipro Corporation Owen Mumford Limited Pavmed Inc PRO-IV Medical Ltd. Ratio, Inc. Rice University SteadyMed Therapeutics, Inc. StnDrd Infusion Corporation Tel Aviv University Terumo Corporation ToucheMedical Ltd. Unilife Corporation University of Minnesota University of Southern California Note: Certain sections in the report may be removed or altered based on the availability and relevance of data in relation to the equipment type. The GlobalData Differentiation This report is prepared using data sourced from in-house databases, secondary and primary research by GlobalData's team of industry experts. The data and analysis within this report are driven by GlobalData Medical Equipment (GDME) databases. GlobalData Medical Equipment database gives you comprehensive information required to drive sales, investment and deal-making activity in your business. It includes the following: 15,000+ data tables showing market size across more than 780 medical equipment segments and 15 countries, from 2007 and forecast to 2021 10,000+ primary interviews, conducted annually to ensure data and report quality 1,100+ medical equipment conference reports 2,000+ industry-leading reports per annum, covering growing sectors, market trends, investment opportunities and competitive landscape 600+ analysis reports, covering market and pipeline product analysis, by indication; medical equipment trends and issues, and investment and M&A trends 56,500+ medical equipment company profiles 4,100+ company profiles of medical equipment manufacturers in China and India 2,000+ company profiles of medical equipment manufacturers in Japan 825+ companies’ revenue splits and market shares 1,750+ quarterly and annual medical equipment company financials 700+ medical equipment company SWOTs 19,000+ pipeline product profiles 27,000+ marketed product profiles 33,000+ clinical trials 25,000+ trial investigators 20,600+ product patents 3,700+ reports on companies with products under development 21,500+ reports on deals in the medical equipment industry 1,300+ surgical and diagnostic procedures by therapy area 50+ key healthcare indicators by country For more information or to receive a free demonstration of the service, please visit: GlobalData Medical Custom Requirements Contact us to discuss the areas of your business where you need external input, and we will work with you to identify the strongest way forward to meet your needs. Read More
Facebook
TwitterPHMSA regulations in 49 CFR Part 199 require operators of pipelines, liquefied natural gas plants, and underground natural gas storage facilities to submit data to the DOT DAMIS. Operators with less than 50 covered employees are required to submit once every three years, not annually.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This comprehensive pharmaceutical synthetic dataset contains 1,393 records of synthetic drug information with 15 columns, designed for data science projects focusing on healthcare analytics, drug safety analysis, and pharmaceutical research. The dataset simulates real-world pharmaceutical data with appropriate variety and realistic constraints for machine learning applications.
| Attribute | Value |
|---|---|
| Total Records | 1,393 |
| Total Columns | 15 |
| File Format | CSV |
| Data Types | Mixed (intentional for data cleaning practice) |
| Domain | Pharmaceutical/Healthcare |
| Use Case | ML Training, Data Analysis, Healthcare Research |
| Column Name | Data Type | Unique Values | Description | Example Values |
|---|---|---|---|---|
drug_name | Object | 1,283 unique | Pharmaceutical drug names with realistic naming patterns | "Loxozepam32", "Amoxparin43", "Virazepam10" |
manufacturer | Object | 10 unique | Major pharmaceutical companies | Pfizer Inc., AstraZeneca, Johnson & Johnson |
drug_class | Object | 10 unique | Therapeutic drug classifications | Antibiotic, Analgesic, Antidepressant, Vaccine |
indications | Object | 10 unique | Medical conditions the drug treats | "Pain relief", "Bacterial infections", "Depression treatment" |
side_effects | Object | 434 unique | Combination of side effects (1-3 per drug) | "Nausea, Dizziness", "Headache, Fatigue, Rash" |
administration_route | Object | 7 unique | Method of drug delivery | Oral, Intravenous, Topical, Inhalation, Sublingual |
contraindications | Object | 10 unique | Medical warnings for drug usage | "Pregnancy", "Heart disease", "Liver disease" |
warnings | Object | 10 unique | Safety instructions and precautions | "Take with food", "Avoid alcohol", "Monitor blood pressure" |
batch_number | Object | 1,393 unique | Manufacturing batch identifiers | "xr691zv", "Ye266vU", "Rm082yX" |
expiry_date | Object | 782 unique | Drug expiration dates (YYYY-MM-DD) | "2025-12-13", "2027-03-09", "2026-10-06" |
side_effect_severity | Object | 3 unique | Severity classification | Mild, Moderate, Severe |
approval_status | Object | 3 unique | Regulatory approval status | Approved, Pending, Rejected |
| Column Name | Data Type | Range | Mean | Std Dev | Description |
|---|---|---|---|---|---|
approval_year | Float/String* | 1990-2024 | 2006.7 | 10.0 | FDA/regulatory approval year |
dosage_mg | Float/String* | 10-990 mg | 499.7 | 290.0 | Medication strength in milligrams |
price_usd | Float/String* | $2.32-$499.24 | $251.12 | $144.81 | Drug price in US dollars |
*Intentionally stored as mixed types for data cleaning practice
| Manufacturer | Count | Percentage |
|---|---|---|
| Pfizer Inc. | 170 | 12.2% |
| AstraZeneca | ~140 | ~10.0% |
| Merck & Co. | ~140 | ~10.0% |
| Johnson & Johnson | ~140 | ~10.0% |
| GlaxoSmithKline | ~140 | ~10.0% |
| Others | ~623 | ~44.8% |
| Drug Class | Count | Most Common |
|---|---|---|
| Anti-inflammatory | 154 | ✓ |
| Antibiotic | ~140 | |
| Antidepressant | ~140 | |
| Antiviral | ~140 | |
| Vaccine | ~140 | |
| Others | ~679 |
| Severity | Count | Percentage |
|---|---|---|
| Severe | 488 | 35.0% |
| Moderate | ~453 | ~32.5% |
| Mild | ~452 | ~32.5% |
Facebook
TwitterSuccess.ai’s Prospect Data for Biotechnology & Pharmaceutical Innovators Globally provides a powerful dataset designed to connect businesses with key players driving innovation in the biotech and pharmaceutical industries worldwide. Covering companies engaged in drug development, biotechnology research, and life sciences innovation, this dataset offers verified profiles, professional histories, work emails, and phone numbers of decision-makers and industry leaders.
With access to over 700 million verified global profiles and 30 million company profiles, Success.ai ensures your outreach, market research, and partnership efforts are powered by accurate, continuously updated, and AI-validated data. Supported by our Best Price Guarantee, this solution is indispensable for navigating the fast-evolving biotech and pharmaceutical landscape.
Why Choose Success.ai’s Prospect Data for Biotech and Pharmaceutical Innovators?
Verified Contact Data for Industry Professionals
Comprehensive Coverage Across Global Markets
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Decision-Maker Profiles in Biotech and Pharmaceuticals
Advanced Filters for Precision Targeting
Research and Innovation Insights
AI-Driven Enrichment
Strategic Use Cases:
Sales and Lead Generation
Market Research and Competitive Analysis
Partnership Development and Licensing
Regulatory Compliance and Risk Mitigation
Why Choose Success.ai?
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The success of artificial intelligence (AI) models has been limited by the requirement of large amounts of high-quality training data, which is just the opposite of the situation in most drug discovery pipelines. Active learning (AL) is a subfield of AI that focuses on algorithms that select the data they need to improve their models. Here, we propose a two-phase AL pipeline and apply it to the prediction of drug oral plasma exposure. In phase I, the AL-based model demonstrated a remarkable capability to sample informative data from a noisy data set, which used only 30% of the training data to yield a prediction capability with an accuracy of 0.856 on an independent test set. In phase II, the AL-based model explored a large diverse chemical space (855K samples) for experimental testing and feedback. Improved accuracy and new highly confident predictions (50K samples) were observed, which suggest that the model’s applicability domain has been significantly expanded.
Facebook
Twitter
According to our latest research, the global clinical data de-identification pipelines market size reached USD 680 million in 2024, with a robust growth trajectory driven by stringent data privacy regulations and the increasing adoption of digital health records. The market is expected to expand at a CAGR of 15.6% from 2025 to 2033, with the forecasted market size projected to reach USD 2.1 billion by 2033. This growth is primarily attributed to the rising emphasis on patient data security, the proliferation of healthcare data, and the need to facilitate compliant data sharing for research and analytics.
The rapid digitalization of healthcare systems worldwide has resulted in an unprecedented surge in electronic health records (EHRs), clinical trial data, and patient registries. As healthcare organizations increasingly leverage these vast datasets for research, analytics, and population health management, the risk of data breaches and unauthorized disclosures has escalated. This scenario has intensified the demand for robust clinical data de-identification pipelines, which ensure that personally identifiable information (PII) is systematically removed or masked before data is shared or analyzed. Regulatory frameworks such as HIPAA in the United States, GDPR in Europe, and similar mandates in other regions have made de-identification not just a best practice but a legal requirement, further propelling the adoption of advanced software and services in this market.
Another significant growth driver for the clinical data de-identification pipelines market is the expanding landscape of clinical research and precision medicine. Pharmaceutical and biotechnology companies, as well as academic and research institutes, are increasingly reliant on large-scale, multi-source datasets to accelerate drug discovery, understand disease mechanisms, and personalize treatment protocols. However, these research initiatives necessitate stringent privacy safeguards to maintain patient confidentiality while enabling meaningful data analysis. The integration of artificial intelligence (AI) and machine learning (ML) technologies into de-identification pipelines has enhanced the accuracy and efficiency of data anonymization processes, thereby supporting the dual objectives of compliance and research innovation.
Strategic partnerships and collaborations among healthcare providers, technology vendors, and research organizations have also played a pivotal role in shaping the clinical data de-identification pipelines market. Leading technology firms are investing in the development of scalable, interoperable solutions that can seamlessly integrate with existing healthcare IT infrastructure. Moreover, the emergence of cloud-based deployment models has made de-identification solutions more accessible to smaller healthcare entities and research organizations, democratizing access to advanced privacy tools. This trend is particularly pronounced in regions with rapidly evolving healthcare ecosystems, such as Asia Pacific and Latin America, where digital health initiatives are gaining momentum.
From a regional perspective, North America continues to dominate the clinical data de-identification pipelines market, accounting for the largest revenue share in 2024. This leadership is underpinned by the presence of a mature healthcare IT infrastructure, strong regulatory oversight, and significant investments in clinical research. Europe follows closely, benefiting from stringent data protection laws and a vibrant research community. Meanwhile, Asia Pacific is emerging as the fastest-growing market, fueled by large-scale government initiatives to digitize healthcare, rising awareness about patient privacy, and the increasing participation of regional players in global clinical research networks. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as healthcare modernization efforts gather pace.
<br /
Facebook
TwitterAbstract:
The current COVID-19 pandemic has highlighted the need for new and fast methods to identify novel or repurposed therapeutic drugs. Here we present a method for untargeted phenotypic drug screening of virus-infected cells, combining Cell Painting with antibody-based detection of viral infection in a single assay. We designed an image analysis pipeline for segmentation and classification of virus-infected and non-infected cells, followed by extraction of morphological properties. We show that the methodology can successfully capture virus-induced phenotypic signatures of MRC-5 human lung fibroblasts infected with Human coronavirus 229E (CoV-229E). Moreover, we demonstrate that our method can be used in phenotypic drug screening using a panel of nine host- and virus-targeting antivirals. Treatment with effective antiviral compounds reversed the morphological profile of the host cells towards a non-infected state. The method can be used in drug discovery for morphological profiling of novel antiviral compounds on both infected and non-infected cells.
Screen description: The images are of MRC-5 human lung fibroblasts infected with Human coronavirus 229E (CoV-229E) and treated with a panel of nine host- and virus-targeting antivirals. Cells are labelled with five labels that characterise seven cellular components (from the "Cell Painting" assay) as well as with a Coronavirus pan monoclonal antibody combined with a secondary antibody. This experiment consists of 5 plates. Each plate has 60 wells, and 9 fields of view per well. Each field was imaged in five channels (detection wavelengths), and each channel is stored as a separate, grayscale image file in TIFF format.The channel names (w1-w5) correspond to the following stains: w1 = Hoechst 33342 (HOECHST); w2= Coronavirus pan Monoclonal Antibody (FIPV3-70) + Goat Anti-Mouse IgG H&L secondary antibody (MITO); w3= Wheat Germ Agglutinin/Alexa Fluor 555 + Phalloidin/Alexa Fluor 568 (PHAandWGA); w4= SYTO 14 green (SYTO); w5= Concanavalin A/Alexa Fluor 488 (CONC) Organization of files: 1) Raw image data: - MRC5_HCoV229_Plate1.tar.gz - MRC5_HCoV229_Plate2.tar.gz - MRC5_Plate3.tar.gz - MRC5_Plate4.tar.gz - MRC5_HCoV229_Plate5.tar.gz 2) Image analysis pipelines (CellProfiler 4.0.7): Cell Profiler project with a subset of images to try out the analysis pipeline:- Example_PipelineAndData.tar.gz Quality control, illumination correction and feature extraction pipelines:- AnalysisPipelines.tar.gz
3) Extracted feature data: - features_MRC5_HCoV229_Plate1.tar.gz - features_MRC5_HCoV229_Plate2.tar.gz- features_MRC5_Plate3.tar.gz- features_MRC5_Plate4.tar.gz- features_MRC5_HCoV229_Plate5.tar.gz Metadata: The file “Metadata_MRC5_HCoV229E_plate1-5.csv“ contains the metadata in CSV format, with the following fields: - Plate_id: corresponds to the experimental plate - Well: well allocation in the 96-well plate - virus: "virus +" when cells are exposed to virus, and "virus -' for non-infected controls- Compound: name of compound - Dose [μM]: dose of compound For full information, see the manuscript to which this data is linked.
Facebook
Twitterhttps://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy
The GLOBOCAN database revealed that there were 544,100 esophageal cancer deaths and 604,100 new cases worldwide in 2020, translating to age-standardized incidence and mortality rates of 6.3 and 5.6 per 100,000, respectively. Interestingly, men account for about 70% of instances, and there is a significant gender disparity in frequency worldwide, with men being impacted two to five times more frequently than women.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global clinical data de-identification pipelines market size reached USD 425.8 million in 2024. The market is experiencing robust momentum, with a recorded CAGR of 17.9% driven by the increasing adoption of advanced data privacy solutions across the healthcare sector. By 2033, the market is projected to achieve a value of USD 1,541.3 million, underscoring the escalating need for secure data handling and compliance with stringent regulatory frameworks. The primary growth factor for this sector is the rising volume of healthcare data and the critical necessity to protect patient privacy while enabling data-driven research and innovation.
The surge in healthcare digitization, coupled with the proliferation of electronic health records (EHRs), has significantly contributed to the growth of the clinical data de-identification pipelines market. Healthcare organizations are increasingly leveraging digital platforms to store, share, and analyze sensitive patient data, which in turn amplifies the risk of data breaches and unauthorized access. This scenario has heightened the demand for robust de-identification solutions, ensuring that personal health information (PHI) is rendered anonymous before being used for research, analytics, or sharing with third parties. Regulatory mandates such as HIPAA in the United States and GDPR in Europe further reinforce the need for effective data de-identification, driving both innovation and adoption in this market.
Another critical growth driver is the expanding landscape of clinical research and real-world evidence (RWE) generation. Pharmaceutical and biotechnology companies, as well as academic research institutions, rely heavily on access to vast amounts of patient data to accelerate drug development, conduct population health studies, and improve clinical outcomes. However, the sensitive nature of this data necessitates sophisticated de-identification pipelines that can efficiently strip personally identifiable information (PII) while preserving the integrity and utility of the dataset. This balance between data utility and privacy protection is fueling investments in next-generation de-identification software and services, further propelling market expansion.
The integration of artificial intelligence (AI) and machine learning (ML) technologies into de-identification pipelines is also playing a pivotal role in market growth. Advanced algorithms enable more accurate and automated identification and removal of sensitive information from unstructured clinical narratives, images, and structured datasets. This technological evolution not only enhances the scalability and reliability of de-identification processes but also addresses the growing complexity of healthcare data formats. As a result, organizations can more confidently share anonymized datasets for collaborative research, secondary analytics, and public health monitoring, all while maintaining compliance with global privacy standards.
From a regional perspective, North America continues to dominate the clinical data de-identification pipelines market, accounting for the largest share in 2024. The region’s leadership is attributed to a robust healthcare infrastructure, widespread adoption of health IT solutions, and stringent regulatory requirements surrounding data privacy. Europe follows closely, propelled by comprehensive data protection laws and strong investments in healthcare digitalization. Meanwhile, the Asia Pacific region is witnessing the fastest growth, driven by burgeoning healthcare IT adoption, increasing clinical research activities, and rising awareness about patient data privacy. Latin America and the Middle East & Africa are emerging as promising markets, supported by gradual improvements in healthcare technology and regulatory frameworks.
The clinical data de-identification pipelines market by component is segmented into software and services, each playing a distinct yet complementary role in the ecosystem. The software segment encompasses a wide array of solutions designed to automate the identification and removal of sensitive data from clinical records, including structured databases, unstructured clinical notes, and even medical images. These software platforms are increasingly leveraging AI and natural language processing (NLP) to enhance accuracy, adaptability, and speed, making them indispensabl
Facebook
Twitterhttps://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/
Injectable Drug Delivery Devices are used for administration of a drug into patient’s blood through a delivery device. GlobalData's Medical Devices sector report, “Injectable Drug Delivery – Medical Devices Pipeline Assessment, 2017" provides comprehensive information about the Injectable Drug Delivery pipeline products with comparative analysis of the products at various stages of development and information about the clinical trials which are in progress. Read More
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Cancer Vaccines Drug Pipeline market is rapidly evolving as a cornerstone of therapeutic innovation within the oncology landscape. With the global cancer burden continuing to rise, cancer vaccines have emerged as a promising solution to enhance the body's immune response against various cancer types. These vacci
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Non-Alcoholic Steatohepatitis (NASH) Drug Pipeline market is increasingly recognized as a critical area of focus within the pharmaceutical industry. NASH, a progressive liver disease characterized by inflammation and fat accumulation in the liver, has seen a surge in prevalence, primarily linked to rising obesit
Facebook
TwitterIn 2024, Lonza Group had the highest revenue amounting to over eight billion U.S. dollars, among the world's leading contract development and manufacturing companies. A contract development and manufacturing organization (CDMO) can take over various aspects of a pharmaceutical company, including services ranging from drug development to drug manufacturing.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Small molecule structure elucidation using tandem mass spectrometry (MS/MS) plays a crucial role in life science, bioanalytical, and pharmaceutical research. There is a pressing need for increased throughput of compound identification and transformation of historical data into information-rich spectral databases. Meanwhile, molecular networking, a recent bioinformatic framework, provides global displays and system-level understanding of complex LC-MS/MS data sets. Herein we present meRgeION, a multifunctional, modular, and flexible R-based toolbox to streamline spectral database building, automated structural elucidation, and molecular networking. The toolbox offers diverse tuning parameters and the possibility to combine various algorithms in the same pipeline. As an open-source R package, meRgeION is ideally suited for building spectral databases and molecular networks from privacy-sensitive and preliminary data. Using meRgeION, we have created an integrated spectral database covering diverse pharmaceutical compounds that was successfully applied to annotate drug-related metabolites from a published nontargeted metabolomics data set as well as reveal the chemical space behind this complex data set through molecular networking. Moreover, the meRgeION-based processing workflow has demonstrated the usefulness of a spectral library search and molecular networking for pharmaceutical forced degradation studies. meRgeION is freely available at: https://github.com/daniellyz/meRgeION2.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Pipeline HCA Mapping Platforms market size reached USD 1.32 billion in 2024, reflecting robust demand for high-content analysis (HCA) technologies in drug discovery and disease research. The market is expected to grow at a CAGR of 9.8% from 2025 to 2033, reaching a projected value of USD 3.04 billion by 2033. This growth is primarily driven by the increasing adoption of high-throughput screening methods, rising investments in pharmaceutical R&D, and the expanding application of HCA mapping in oncology and personalized medicine.
One of the foremost growth factors propelling the Pipeline HCA Mapping Platforms market is the escalating demand for precision medicine and targeted therapy development. Pharmaceutical and biotechnology companies are increasingly leveraging HCA mapping platforms to accelerate drug discovery processes, identify novel biomarkers, and optimize therapeutic candidates. The ability of these platforms to provide comprehensive cellular insights at high throughput enables researchers to analyze complex biological systems more efficiently. This, in turn, reduces the time and cost associated with traditional experimentation, making HCA mapping platforms an indispensable tool in modern drug development pipelines. The integration of artificial intelligence and machine learning algorithms further enhances the capabilities of these platforms, allowing for automated image analysis and data interpretation, which significantly boosts productivity and accuracy in research settings.
Another significant growth driver is the surge in oncology and chronic disease research. As cancer and cardiovascular diseases continue to pose substantial health burdens worldwide, there is a growing emphasis on understanding cellular responses to various treatments at a granular level. Pipeline HCA mapping platforms facilitate detailed phenotypic screening and mechanistic studies, enabling researchers to uncover subtle changes in cell morphology and function. The platforms' advanced imaging and data analytics capabilities support the identification of potential drug candidates and the assessment of their efficacy and safety profiles. Furthermore, the expansion of collaborative research initiatives between academia, industry, and contract research organizations (CROs) is fostering the adoption of these platforms, as stakeholders seek to streamline workflows and enhance the reproducibility of experimental outcomes.
Technological advancements and increasing accessibility of cloud-based deployment models are also catalyzing market growth. Cloud-based HCA mapping platforms offer scalability, remote access, and seamless integration with other laboratory information management systems (LIMS), making them attractive to both large enterprises and small-to-medium research labs. The shift towards cloud-based solutions is particularly pronounced in regions with robust digital infrastructure, enabling real-time data sharing and collaboration across geographically dispersed teams. This trend is complemented by the growing availability of software-as-a-service (SaaS) offerings, which lower the barriers to entry for emerging players and academic institutions. As a result, the market is experiencing a democratization of high-content analysis technologies, fostering innovation and expanding the user base beyond traditional pharmaceutical giants.
From a regional perspective, North America continues to dominate the Pipeline HCA Mapping Platforms market, accounting for the largest share in 2024, followed by Europe and Asia Pacific. The presence of leading pharmaceutical companies, advanced healthcare infrastructure, and substantial government funding for biomedical research underpin the strong market performance in these regions. Meanwhile, Asia Pacific is witnessing the fastest growth, driven by increasing investments in life sciences, expanding biotech sectors, and rising adoption of cutting-edge research technologies. Latin America and the Middle East & Africa are also emerging as promising markets, supported by gradual improvements in research infrastructure and growing interest in precision medicine. Overall, the global market is characterized by dynamic regional trends, with each geography contributing uniquely to the sector's expansion.
The Pipeline HCA Mapping Platforms market by component is segmented into software and service
Facebook
TwitterThis statistic shows the total number of drugs in the R&D pipeline worldwide from 2001 to 2025. In 2001, there were ***** drugs in the R&D pipeline, whereas there were ****** drugs in the pipeline in January 2025.