3 datasets found
  1. M

    Philippines Fertility Rate (1950-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Philippines Fertility Rate (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/phl/philippines/fertility-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2025
    Area covered
    Philippines
    Description

    Historical chart and dataset showing Philippines fertility rate by year from 1950 to 2025.

  2. Countries with the lowest fertility rates 2024

    • statista.com
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the lowest fertility rates 2024 [Dataset]. https://www.statista.com/statistics/268083/countries-with-the-lowest-fertility-rates/
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    The statistic shows the 20 countries with the lowest fertility rates in 2024. All figures are estimates. In 2024, the fertility rate in Taiwan was estimated to be at 1.11 children per woman, making it the lowest fertility rate worldwide. Fertility rate The fertility rate is the average number of children born per woman of child-bearing age in a country. Usually, a woman aged between 15 and 45 is considered to be in her child-bearing years. The fertility rate of a country provides an insight into its economic state, as well as the level of health and education of its population. Developing countries usually have a higher fertility rate due to lack of access to birth control and contraception, and to women usually foregoing a higher education, or even any education at all, in favor of taking care of housework. Many families in poorer countries also need their children to help provide for the family by starting to work early and/or as caretakers for their parents in old age. In developed countries, fertility rates and birth rates are usually much lower, as birth control is easier to obtain and women often choose a career before becoming a mother. Additionally, if the number of women of child-bearing age declines, so does the fertility rate of a country. As can be seen above, countries like Hong Kong are a good example for women leaving the patriarchal structures and focusing on their own career instead of becoming a mother at a young age, causing a decline of the country’s fertility rate. A look at the fertility rate per woman worldwide by income group also shows that women with a low income tend to have more children than those with a high income. The United States are neither among the countries with the lowest, nor among those with the highest fertility rate, by the way. At 2.08 children per woman, the fertility rate in the US has been continuously slightly below the global average of about 2.4 children per woman over the last decade.

  3. f

    Integrated Farm Household Survey 2003 - Philippines

    • microdata.fao.org
    Updated Jan 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Agricultural Statistics (2023). Integrated Farm Household Survey 2003 - Philippines [Dataset]. https://microdata.fao.org/index.php/catalog/1089
    Explore at:
    Dataset updated
    Jan 31, 2023
    Dataset authored and provided by
    Bureau of Agricultural Statistics
    Time period covered
    2003
    Area covered
    Philippines
    Description

    Abstract

    The Integrated Farm Household Survey (IFHS) supported the agricultural Research and Development Program in terms of benchmark data on the characteristics of farms and farmers. The IFHS results provided inputs for the development and/or improvement of the performance indicators system in agriculture. Further, the survey results could quantify the impact of agricultural policies of the government.

    The survey gathered household level data on the following; Household Information, Farm Particulars, Inventory of Farm Investments, Household Income, Household Expenditures and Credit Information.

    Specifically, the following data are generated: 1. Level, structure and/or sources of farm household income; 2. Characteristics of farms/farm enterprises and the farm households; 3. Access of farm households to agricultural support services; 4. Farm management such as input use and cultivation practices; 5. Expenditure patterns of the farm households; 6. Farm and households investments; and 7. Other socio-economic data.

    Geographic coverage

    National Coverage.

    Analysis unit

    Households

    Universe

    The survey covered farm households with farming/fishing operations.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The IFHS utilized different sampling frames at the barangay and household levels. At the barangay level, the list of agricultural barangays covered in the 1999 Barangay Screening Survey (BSS) served as the sampling frame while at the household level, the listing of households generated from the 2000 Census of Population and Housing (CPH) of the National Statistics Office (NSO) was used as basis for drawing the samples. The 2000 CPH listing was utilized as sampling frame for the IFHS despite the limitation that households were not classified into farming and non-farming categories for two major considerations. First, the 2000 CPH provided the most updated lists of households by barangay. Second, budgetary constraints precluded the conduct of household screening in the selected sample barangays for the survey.

    The domain of the survey was the province. A two-stage stratified sampling design was adopted with the barangay as primary sampling unit and the farming household as secondary sampling unit. The number of farming households was used as the stratification variable. Primary and secondary sampling units were both drawn using simple random sampling.

    In getting the number of barangays as representative of the domain (province) level, the total number of agricultural barangays in the province reported in the 1999 Barangay Screening Survey (BSS) was used in proportionately allocating the target sample size of around 600 barangays to the Integrated Farm Household Survey (IFHS) provinces. Due to budgetary consideration, the total number of barangays included for small and large agricultural sampling of households with at least one member engaged in agricultural activity. provinces was set at six (6) and nine (9) barangays, respectively, depending on the computed total sample size for the province, that is,

            n' = 6 if n < 6, and
            n' = 9 otherwise.
    

    Ten (10) sample households were allocated for each sample barangay. This procedure resulted in total sample size of 592 barangays and 5,920 households for the entire country.

    A general feature of the design was the division of the primary sampling units into strata of approximately equal sizes relative to the number of farming households reported in the 1999 BSS. The division of the barangays within the province and the drawing of sample was done as follows:

    The barangays were arrayed in descending order based on the total number of farming households. These barangays were then divided into three (3) strata such that the cumulative total number of farming households of all the barangays in any one stratum was approximately of the same magnitude as the rest of the individual strata. Thus, Stratum 1 barangays constitute all "large barangays", Stratum 2 barangays constitute all "medium barangays", and Stratum 3 barangays constitute all "small barangays"; with respect to total number of farming households.

    Equal sample sizes were allocated and drawn from the three strata, resulting in two (2) and three (3) sample barangays, respectively, per stratum depending on the sample size for the province. Selection of sample barangays wss done at the BAS Central Office using simple random sampling. The generated lists of sample barangays were then submitted to NSO for the drawing of sample households and for the photocopying of corresponding barangay maps.

    Drawing of sample households was made at the NSO field offices using simple random sampling of households with at least one member engaged in agricultural activity. The generated lists of samples were sent back to BAS Central Office for control and distribution to concerned Provincial Operations Centers (POCs).

    Sampling deviation

    As in any survey, there were cases wherein samples need to be substituted or replaced. Following were the guidelines in replacing sample barangays and/or households:

    Sample Barangays - Only two general reasons were considered valid for substituting barangays: 1. Transportation costs were way above the allocated budget for operations; or 2. Unfavorable peace and order situation in the area.

    The list of replacement barangays served as the only source of substitute barangays. It was emphasized that a replacement barangay should be taken only from the list of replacement barangays in the same stratum.

    Sample Households - Only the reasons enumerated below are considered valid for replacing households. 1.Household was not a qualified IFHS sample: a. For regions except NCR: Candidate household was not a farming household; b. For NCR: Candidate household was not into agricultural activities, or into agricultural activities but produce was not intended to generate income for the household; c. Conditions (a) and (b) were satisfied but there was no agricultural operation during the reference period (July 2002 to June 2003); 2. Household was a qualified IFHS sample but any of the following situations arose during visit: a. No qualified respondent was available for interview during the entire survey period; b. Qualified respondent refused to be interviewed; c. Interview was terminated;

    It was emphasized that reasons for substituting sample households should be validated first by the field supervisor before replacement is allowed. Replacement households should be taken only from the list of replacements for the barangay.

    Mode of data collection

    Face-to-face paper [f2f]

    Cleaning operations

    Consistencies of data items within and across record types were first verified and checked according to the Data Processing Guidelines of the study. First stage of the editing was done manualy. A second stage consistency check was a component of the Computerized Processing System.

    Initial editing of data was done by the Contractual Data Collectors (CDCs) on every filled up questionaire. These questionnaires were turned over to their supervisors for checking. Editing/Checking for consistencies of data items in particular record types and accross record types were done.

    Second stage of editing was done at the Central Office. The Data Processing System (DPS) was equipped with a customized editing program to filter out-of-range data items to generate an errorlist. The errorlist is a compilation of errors on specific data item that did not pass the specification. The errorlist list was checked based on the information in the questionnaire. The correction was reflected to the data file using the the CENTRY module of the Integrated Micro-computer Processing System (IMPS).

    Response rate

    From 5920 sample households, 5448 sample units were successfuly interviewed for a response rate of 92.03%.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MACROTRENDS (2025). Philippines Fertility Rate (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/phl/philippines/fertility-rate

Philippines Fertility Rate (1950-2025)

Philippines Fertility Rate (1950-2025)

Explore at:
csvAvailable download formats
Dataset updated
Jun 30, 2025
Dataset authored and provided by
MACROTRENDS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 1, 1950 - Dec 31, 2025
Area covered
Philippines
Description

Historical chart and dataset showing Philippines fertility rate by year from 1950 to 2025.

Search
Clear search
Close search
Google apps
Main menu