100+ datasets found
  1. Smartphone personal use and selected smartphone habits by gender and age...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Jun 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2021). Smartphone personal use and selected smartphone habits by gender and age group [Dataset]. http://doi.org/10.25318/2210014301-eng
    Explore at:
    Dataset updated
    Jun 22, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Percentage of Canadians using a smartphone for personal use and selected habits of use during a typical day.

  2. Mobile Phone Price

    • kaggle.com
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiattisak Rattanaporn (2023). Mobile Phone Price [Dataset]. https://www.kaggle.com/datasets/rkiattisak/mobile-phone-price/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 9, 2023
    Dataset provided by
    Kaggle
    Authors
    Kiattisak Rattanaporn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains information on the prices of several mobile phones from different brands. It includes details such as the storage capacity, RAM, screen size, camera specifications, battery capacity, and price of each device.

    Columns

    Brand: the manufacturer of the phone

    Model: the name of the phone model

    Storage (GB): the amount of storage space (in gigabytes) available on the phone

    RAM (GB): the amount of RAM (in gigabytes) available on the phone

    Screen Size (inches): the size of the phone's display screen in inches

    Camera (MP): the megapixel count of the phone's rear camera(s)

    Battery Capacity (mAh): the capacity of the phone's battery in milliampere hours

    Price ($): the retail price of the phone in US dollars

    Each row represents a different mobile phone model. The data can be used to analyze pricing trends and compare the features and prices of different mobile phones.

    ** The purpose of creating this dataset is solely for educational use, and any commercial use is strictly prohibited and this dataset was large language models generated and not collected from actual data sources.

  3. Smartphone users in Singapore 2020-2029

    • statista.com
    • ai-chatbox.pro
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Smartphone users in Singapore 2020-2029 [Dataset]. https://www.statista.com/statistics/494598/smartphone-users-in-singapore/
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Singapore
    Description

    In 2023, the number of smartphone users in Singapore reached about 5.7 million. This number has been increasing since 2020 and is expected to grow to over 5.9 million by 2029. The use of smartphones and the internet Smartphones and internet use are growing hand in hand. In Singapore, internet penetration has been steadily increasing and is expected to rise even further in the following years, with the mobile internet penetration rate there among the highest in the world. Thanks to its well-developed telecommunications infrastructure, Singapore has one of the fastest mobile internet connection speeds in the region, becoming the first country in the world to achieve nationwide 5G coverage. Social media use The smartphone penetration in Singapore is high and social media are widely used. Meta’s platforms are the most popular, with WhatsApp and Facebook leading the way. Twitter has the largest advertising audience in the country. The growing use of social networks allows advertisers to reach a broad audience, resulting in revenues that are expected to reach 483.24 million U.S. dollars in 2022.

  4. Individuals Smartphone Ownership By Age Group, Annual

    • data.gov.sg
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Singapore Department of Statistics (2024). Individuals Smartphone Ownership By Age Group, Annual [Dataset]. https://data.gov.sg/datasets/d_65567444c3df02aceb795897bbd183c9/view
    Explore at:
    Dataset updated
    Oct 24, 2024
    Dataset authored and provided by
    Singapore Department of Statistics
    License

    https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence

    Time period covered
    Jan 2017 - Dec 2023
    Description

    Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_65567444c3df02aceb795897bbd183c9/view

  5. Data from: REFERENCES DATASET: A SYSTEMATIC REVIEW OF THE EDUCATIONAL USE OF...

    • zenodo.org
    • portal.reunid.eu
    • +1more
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francisco Javier Ramos-Pardo; Francisco Javier Ramos-Pardo; Diego Calderon-Garrido; Diego Calderon-Garrido; Cristina Alonso-Cano; Cristina Alonso-Cano (2024). REFERENCES DATASET: A SYSTEMATIC REVIEW OF THE EDUCATIONAL USE OF MOBILE PHONES IN TIMES OF COVID-19 [Dataset]. http://doi.org/10.5281/zenodo.7581311
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Francisco Javier Ramos-Pardo; Francisco Javier Ramos-Pardo; Diego Calderon-Garrido; Diego Calderon-Garrido; Cristina Alonso-Cano; Cristina Alonso-Cano
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The article "A systematic review of the educational use of mobile phones in times of COVID-19" aims to review what research has delved into the educational use of mobile phones during the COVID-19 pandemic. To do this, 38 papers indexed in the Journal Citation Reports database between 2020 and 2021 were analyzed. These works were categorized into the following categories: the mobile phone as part of educational innovation, improvement of results and academic performance, positive attitude towards mobile phone use in education, and risks and/or barriers to mobile phone use. The conclusions show that most teaching innovation experiences focus more on the device than on the student. Beyond its innovative nature, the mobile phone became a tool to allow access and continuity of training during the pandemic, especially in post-compulsory and higher education.

    This data set is composed of the table with the references used for the review.

  6. n

    344 People - English(the United States) Scripted Monologue Smartphone speech...

    • m.nexdata.ai
    Updated Feb 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2025). 344 People - English(the United States) Scripted Monologue Smartphone speech dataset_Guiding [Dataset]. https://m.nexdata.ai/datasets/speechrecog/79
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    nexdata technology inc
    Authors
    Nexdata
    Area covered
    United States
    Variables measured
    Format, Country, Speaker, Language, Accuracy Rate, Content category, Recording device, Recording condition, Language(Region) Code, Features of annotation
    Description

    English(the United States) Scripted Monologue Smartphone speech dataset_Guiding, collected from monologue based on given prompts, covering smart car, smart home, voice assistant domains. Transcribed with text content and other attributes. Our dataset was collected from extensive and diversify speakers(344 speakers), geographicly speaking, enhancing model performance in real and complex tasks.Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.

  7. d

    Mobile Location Data | United States | +300M Unique Devices | +150M Daily...

    • datarade.ai
    .json, .xml, .csv
    Updated Jul 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Quadrant (2020). Mobile Location Data | United States | +300M Unique Devices | +150M Daily Users | +200B Events / Month [Dataset]. https://datarade.ai/data-products/mobile-location-data-us
    Explore at:
    .json, .xml, .csvAvailable download formats
    Dataset updated
    Jul 7, 2020
    Dataset authored and provided by
    Quadrant
    Area covered
    United States
    Description

    Quadrant provides Insightful, accurate, and reliable mobile location data.

    Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.

    These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.

    We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.

    We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.

    Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.

    Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.

  8. Australia: mobile phone internet users 2020-2029

    • statista.com
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Australia: mobile phone internet users 2020-2029 [Dataset]. https://www.statista.com/statistics/558497/number-of-mobile-internet-user-in-australia/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Australia
    Description

    The number of smartphone users in Australia was forecast to continuously increase between 2024 and 2029 by in total 1.6 million users (+6.39 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 26.58 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  9. Information Technology Usage and Penetration - Table 720-90006 : Persons...

    • data.gov.hk
    Updated Jul 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2024). Information Technology Usage and Penetration - Table 720-90006 : Persons aged 10 and over who had a mobile phone (including smartphone) by sex and age group [Dataset]. https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-720-90006
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    data.gov.hk
    Description

    Information Technology Usage and Penetration - Table 720-90006 : Persons aged 10 and over who had a mobile phone (including smartphone) by sex and age group

  10. Mobile broadband connections per 100 inhabitants in the United States...

    • statista.com
    Updated Nov 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Mobile broadband connections per 100 inhabitants in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/3124/mobile-internet-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Nov 19, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of mobile broadband connections per 100 inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 21.1 connections (+11.49 percent). After the fifteenth consecutive increasing year, the mobile broadband penetration is estimated to reach 204.76 connections and therefore a new peak in 2029. Notably, the number of mobile broadband connections per 100 inhabitants of was continuously increasing over the past years.Mobile broadband connections include cellular connections with a download speed of at least 256 kbit/s (without satellite or fixed-wireless connections). Cellular Internet-of-Things (IoT) or machine-to-machine (M2M) connections are excluded. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of mobile broadband connections per 100 inhabitants in countries like Canada and Mexico.

  11. Indonesian Phone Dataset

    • kaggle.com
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luthfiansyah Yusuf (2023). Indonesian Phone Dataset [Dataset]. https://www.kaggle.com/datasets/luthfikun/indonesian-phone-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 23, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Luthfiansyah Yusuf
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset consisting of smartphone sold in Indonesia on November 2022. Specification for each devices was taken from GSMArea. While the prices were taken from various marketplaces (Tokopedia and Shopee) from every brand respective official store. The smartphones listed has to be available to purchase when data is taken.

  12. Z

    Data from: A 24-hour dynamic population distribution dataset based on mobile...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claudia Bergroth (2022). A 24-hour dynamic population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4724388
    Explore at:
    Dataset updated
    Feb 16, 2022
    Dataset provided by
    Tuuli Toivonen
    Olle Järv
    Henrikki Tenkanen
    Claudia Bergroth
    Matti Manninen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Helsinki Metropolitan Area, Finland
    Description

    Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.

    In this dataset:

    We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.

    Please cite this dataset as:

    Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4

    Organization of data

    The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:

    HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.

    HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.

    HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.

    target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.

    Column names

    YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.

    H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)

    In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.

    License Creative Commons Attribution 4.0 International.

    Related datasets

    Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612

    Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564

  13. Phone Number Data | 50M+ Verified Phone Numbers for Global Professionals |...

    • datarade.ai
    Updated Jan 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Phone Number Data | 50M+ Verified Phone Numbers for Global Professionals | Contact Details from 170M+ Profiles - Best Price Guarantee [Dataset]. https://datarade.ai/data-products/phone-number-data-50m-verified-phone-numbers-for-global-pr-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    Area covered
    Mozambique, Algeria, Uganda, Panama, Tonga, Timor-Leste, Mongolia, Korea (Democratic People's Republic of), San Marino, Germany
    Description

    Success.ai’s Phone Number Data offers direct access to over 50 million verified phone numbers for professionals worldwide, extracted from our expansive collection of 170 million profiles. This robust dataset includes work emails and key decision-maker profiles, making it an essential resource for companies aiming to enhance their communication strategies and outreach efficiency. Whether you're launching targeted marketing campaigns, setting up sales calls, or conducting market research, our phone number data ensures you're connected to the right professionals at the right time.

    Why Choose Success.ai’s Phone Number Data?

    Direct Communication: Reach out directly to professionals with verified phone numbers and work emails, ensuring your message gets to the right person without delay. Global Coverage: Our data spans across continents, providing phone numbers for professionals in North America, Europe, APAC, and emerging markets. Continuously Updated: We regularly refresh our dataset to maintain accuracy and relevance, reflecting changes like promotions, company moves, or industry shifts. Comprehensive Data Points:

    Verified Phone Numbers: Direct lines and mobile numbers of professionals across various industries. Work Emails: Reliable email addresses to complement phone communications. Professional Profiles: Decision-makers’ profiles including job titles, company details, and industry information. Flexible Delivery and Integration: Success.ai offers this dataset in various formats suitable for seamless integration into your CRM or sales platform. Whether you prefer API access for real-time data retrieval or static files for periodic updates, we tailor the delivery to meet your operational needs.

    Competitive Pricing with Best Price Guarantee: We provide this essential data at the most competitive prices in the industry, ensuring you receive the best value for your investment. Our best price guarantee means you can trust that you are getting the highest quality data at the lowest possible cost.

    Targeted Applications for Phone Number Data:

    Sales and Telemarketing: Enhance your telemarketing campaigns by reaching out directly to potential customers, bypassing gatekeepers. Market Research: Conduct surveys and research directly with industry professionals to gather insights that can shape your business strategy. Event Promotion: Invite prospects to webinars, conferences, and seminars directly through personal calls or SMS. Customer Support: Improve customer service by integrating accurate contact information into your support systems. Quality Assurance and Compliance:

    Data Accuracy: Our data is verified for accuracy to ensure over 99% deliverability rates. Compliance: Fully compliant with GDPR and other international data protection regulations, allowing you to use the data with confidence globally. Customization and Support:

    Tailored Data Solutions: Customize the data according to geographic, industry-specific, or job role filters to match your unique business needs. Dedicated Support: Our team is on hand to assist with data integration, usage, and any questions you may have. Start with Success.ai Today: Engage with Success.ai to leverage our Phone Number Data and connect with global professionals effectively. Schedule a consultation or request a sample through our dedicated client portal and begin transforming your outreach and communication strategies today.

    Remember, with Success.ai, you don’t just buy data; you invest in a partnership that grows with your business needs, backed by our commitment to quality and affordability.

  14. Samsung Stock Data 2024

    • kaggle.com
    Updated Nov 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umer Haddii (2024). Samsung Stock Data 2024 [Dataset]. https://www.kaggle.com/datasets/umerhaddii/samsung-stock-data-2024/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 20, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Umer Haddii
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Samsung Group is a South Korean conglomerate behind Samsung Electronics, the world's largest manufacturer of DRAM, NAND flash memory, SSD, television, refrigerator, cell phones and smartphones.

    Market cap: $265.36 Billion USD

    As of November 2024 Samsung has a market cap of $265.36 Billion USD. This makes Samsung the world's 37th most valuable company by market cap according to our data. The market capitalization, commonly called market cap, is the total market value of a publicly traded company's outstanding shares and is commonly used to measure how much a company is worth.

    Content

    Geography: SK

    Time period: Jan 2007- November 2024

    Unit of analysis: Samsung Stock Data 2024

    Variables

    VariableDescription
    datedate
    openThe price at market open.
    highThe highest price for that day.
    lowThe lowest price for that day.
    closeThe price at market close, adjusted for splits.
    adj_closeThe closing price after adjustments for all applicable splits and dividend distributions. Data is adjusted using appropriate split and dividend multipliers, adhering to Center for Research in Security Prices (CRSP) standards.
    volumeThe number of shares traded on that day.

    Acknowledgements

    This dataset belongs to me. I’m sharing it here for free. You may do with it as you wish.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F416b4979bb4cb14fd67c074fdd79bc8d%2FScreenshot%202024-11-20%20174451.png?generation=1732106787272689&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F92ec4bb9683e7c0d4325ca5680a911bf%2FScreenshot%202024-11-20%20174553.png?generation=1732106801362941&alt=media" alt="">

  15. n

    175 Hours - Thai(Thailand) Spontaneous Dialogue Smartphone speech dataset

    • m.nexdata.ai
    Updated Mar 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2024). 175 Hours - Thai(Thailand) Spontaneous Dialogue Smartphone speech dataset [Dataset]. https://m.nexdata.ai/datasets/speechrecog/1444
    Explore at:
    Dataset updated
    Mar 20, 2024
    Dataset provided by
    nexdata technology inc
    Authors
    Nexdata
    Area covered
    Thailand
    Variables measured
    Format, Country, Speaker, Language, Accuracy rate, Content category, Recording device, Recording condition, Language(Region) Code, Features of annotation
    Description

    Thai(Thailand) Spontaneous Dialogue Smartphone speech dataset, collected from dialogues based on given topics, covering 20+ domains. Transcribed with text content, speaker's ID, gender, age and other attributes. Our dataset was collected from extensive and diversify speakers(322 native speakers), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.

  16. Telemedicine Use in the Last 4 Weeks

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Telemedicine Use in the Last 4 Weeks [Dataset]. https://catalog.data.gov/dataset/telemedicine-use-in-the-last-4-weeks-5229c
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    To rapidly monitor recent changes in the use of telemedicine, the National Center for Health Statistics (NCHS) and the Health Resources and Services Administration’s Maternal and Child Health Bureau (HRSA MCHB) partnered with the Census Bureau on an experimental data system called the Household Pulse Survey. This 20-minute online survey was designed to complement the ability of the federal statistical system to rapidly respond and provide relevant information about the impact of the coronavirus pandemic in the U.S. The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of the COVID-19 pandemic on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, sex, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.

  17. K-EmoPhone, A Mobile and Wearable Dataset with In-Situ Emotion, Stress, and...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Feb 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soowon Kang; Soowon Kang; Woohyeok Choi; Cheul Young Park; Narae Cha; Auk Kim; Ahsan Habib Khandoker; Leontios Hadjileontiadis; Heepyung Kim; Yong Jeong; Uichin Lee; Woohyeok Choi; Cheul Young Park; Narae Cha; Auk Kim; Ahsan Habib Khandoker; Leontios Hadjileontiadis; Heepyung Kim; Yong Jeong; Uichin Lee (2024). K-EmoPhone, A Mobile and Wearable Dataset with In-Situ Emotion, Stress, and Attention Labels [Dataset]. http://doi.org/10.5281/zenodo.7606611
    Explore at:
    Dataset updated
    Feb 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Soowon Kang; Soowon Kang; Woohyeok Choi; Cheul Young Park; Narae Cha; Auk Kim; Ahsan Habib Khandoker; Leontios Hadjileontiadis; Heepyung Kim; Yong Jeong; Uichin Lee; Woohyeok Choi; Cheul Young Park; Narae Cha; Auk Kim; Ahsan Habib Khandoker; Leontios Hadjileontiadis; Heepyung Kim; Yong Jeong; Uichin Lee
    Description

    ABSTRACT: With the popularization of low-cost mobile and wearable sensors, prior studies have utilized such sensors to track and analyze people's mental well-being, productivity, and behavioral patterns. However, there still is a lack of open datasets collected in-the-wild contexts with affective and cognitive state labels such as emotion, stress, and attention, which would limit the advances of research in affective computing and human-computer interaction. This work presents K-EmoPhone, an in-the-wild multi-modal dataset collected from 77 university students for seven days. This dataset contains (i) continuous probing of peripheral physiological signals and mobility data measured by commercial off-the-shelf devices; (ii) context and interaction data collected from individuals' smartphones; and (iii) 5,582 self-reported affect states, such as emotion, stress, attention, and disturbance, acquired by the experience sampling method. We anticipate that the presented dataset will contribute to the advancement of affective computing, emotion intelligence technologies, and attention management based on mobile and wearable sensor data.

    Last update: Apr. 12, 2023

    -----------------------------

    * Version 1.1.2 (Jun. 3, 2023)

    • Published the dataset at Scientific Data Journal.
    • Updated end-user license agreement.

    * Version 1.1.1 (Apr. 12, 2023)

    • Updated file description and abstract.

    * Version 1.1.0 (Feb. 5, 2023)

    • Updated the quality of the sensor data information.
    • Deleted three participants (P27, P59, P65) due to the low quality issue.

    * Version 1.0.0 (Aug. 3, 2022)

    • Added P##.zip files, where each P## means the separate participant.
    • Added SubjData.zip file, which includes individual characteristics information and labels.
  18. D

    Public Dataset Access and Usage

    • data.sfgov.org
    • s.cnmilf.com
    • +2more
    application/rdfxml +5
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Public Dataset Access and Usage [Dataset]. https://data.sfgov.org/City-Infrastructure/Public-Dataset-Access-and-Usage/su99-qvi4
    Explore at:
    csv, application/rssxml, json, tsv, application/rdfxml, xmlAvailable download formats
    Dataset updated
    May 27, 2025
    Description

    A. SUMMARY This dataset is used to report on public dataset access and usage within the open data portal. Each row sums the amount of users who access a dataset each day, grouped by access type (API Read, Download, Page View, etc).

    B. HOW THE DATASET IS CREATED This dataset is created by joining two internal analytics datasets generated by the SF Open Data Portal. We remove non-public information during the process.

    C. UPDATE PROCESS This dataset is scheduled to update every 7 days via ETL.

    D. HOW TO USE THIS DATASET This dataset can help you identify stale datasets, highlight the most popular datasets and calculate other metrics around the performance and usage in the open data portal.

    Please note a special call-out for two fields: - "derived": This field shows if an asset is an original source (derived = "False") or if it is made from another asset though filtering (derived = "True"). Essentially, if it is derived from another source or not. - "provenance": This field shows if an asset is "official" (created by someone in the city of San Francisco) or "community" (created by a member of the community, not official). All community assets are derived as members of the community cannot add data to the open data portal.

  19. A

    ‘Android Phones’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Android Phones’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-android-phones-d4c3/70fa3a6f/?iid=000-881&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Android Phones’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/khaiid/android-phones on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Android is the most used operating systems in the mobile phones field, it would be interesting to explore the different manufacturers and devices that uses it and which versions of Android operating system are widely used

    Content

    The data has about 1300 rows including 4 attributes described as following:

    Name: Mobile phone name Brand: Manufacturer brand name Release: Release date of the mobile Version: Android version of the mobile

    Questions to be answered

    How many phones use Android 11 ? Which phones were released the latest ? Which brand has the most phones released ? How many brands are there

    Data Collection

    This Data uses material from ( https://en.wikipedia.org/wiki/List_of_Android_smartphones ) which is released under the Creative Commons Attribution-Share-Alike License 3.0

    --- Original source retains full ownership of the source dataset ---

  20. f

    Pearson Correlation Coefficient between mobile phone usage duration and...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shouxi Zhu; Hongbin Gu (2023). Pearson Correlation Coefficient between mobile phone usage duration and mobile phone addiction. [Dataset]. http://doi.org/10.1371/journal.pone.0283577.t009
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shouxi Zhu; Hongbin Gu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pearson Correlation Coefficient between mobile phone usage duration and mobile phone addiction.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Government of Canada, Statistics Canada (2021). Smartphone personal use and selected smartphone habits by gender and age group [Dataset]. http://doi.org/10.25318/2210014301-eng
Organization logo

Smartphone personal use and selected smartphone habits by gender and age group

2210014301

Explore at:
Dataset updated
Jun 22, 2021
Dataset provided by
Statistics Canadahttps://statcan.gc.ca/en
Area covered
Canada
Description

Percentage of Canadians using a smartphone for personal use and selected habits of use during a typical day.

Search
Clear search
Close search
Google apps
Main menu