8 datasets found
  1. t

    Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,...

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski (2024). Dataset: Phototourism dataset. https://doi.org/10.57702/26hrl85q [Dataset]. https://service.tib.eu/ldmservice/dataset/phototourism-dataset
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    A dataset of images of buildings and landmarks, used for training and testing image-based rendering and view synthesis algorithms.

  2. Data from: Phototourism

    • kaggle.com
    zip
    Updated Jul 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Lau (2021). Phototourism [Dataset]. https://www.kaggle.com/alexlwh/phototourism
    Explore at:
    zip(1218042 bytes)Available download formats
    Dataset updated
    Jul 3, 2021
    Authors
    Alex Lau
    Description

    Dataset

    This dataset was created by Alex Lau

    Contents

  3. Photograph sources for Devil Island and Brown Bluff Antarctic penguin...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haoyu Wu; Clare Flynn; Carole Hall; Christian Che-Castaldo; Dimitris Samaras; Mathew Schwaller; Heather J. Lynch (2024). Photograph sources for Devil Island and Brown Bluff Antarctic penguin colonies. [Dataset]. http://doi.org/10.1371/journal.pone.0311038.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Haoyu Wu; Clare Flynn; Carole Hall; Christian Che-Castaldo; Dimitris Samaras; Mathew Schwaller; Heather J. Lynch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Devil's Island, Brown Bluff
    Description

    This table enumerates the selected photographs from an initial pool of over 70 images, filtered based on criteria detailed in the discussion of ‘the appropriateness of ground photos’ (see Results and discussion section).

  4. Sensitivity analysis.

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haoyu Wu; Clare Flynn; Carole Hall; Christian Che-Castaldo; Dimitris Samaras; Mathew Schwaller; Heather J. Lynch (2024). Sensitivity analysis. [Dataset]. http://doi.org/10.1371/journal.pone.0311038.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Haoyu Wu; Clare Flynn; Carole Hall; Christian Che-Castaldo; Dimitris Samaras; Mathew Schwaller; Heather J. Lynch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We use the Devil Island dataset to conduct a sensitivity analysis for the number of pixel prompts needed using mean intersection over union (mIoU), difference in perimeter to area ratio (PAR), and area error. An up (down) arrow indicates a measure where a larger (smaller) number is preferred.

  5. Model evaluation.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haoyu Wu; Clare Flynn; Carole Hall; Christian Che-Castaldo; Dimitris Samaras; Mathew Schwaller; Heather J. Lynch (2024). Model evaluation. [Dataset]. http://doi.org/10.1371/journal.pone.0311038.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Haoyu Wu; Clare Flynn; Carole Hall; Christian Che-Castaldo; Dimitris Samaras; Mathew Schwaller; Heather J. Lynch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Evaluation of final predicted penguin colony areas at Devil Island using mean intersection over union (mIoU), difference in perimeter to area ratio (PAR), area error, and accuracy (i.e. Fig 5 vs. ground truth). 95% confidence intervals are shown. We also show the evaluation of a fully manual approach. An up (down) arrow indicates a measure where a larger (smaller) number is preferred.

  6. A Data Set to Compare Feature Extractors

    • kaggle.com
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Murat IŞIK (2024). A Data Set to Compare Feature Extractors [Dataset]. http://doi.org/10.34740/kaggle/ds/4493370
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Murat IŞIK
    Description

    This dataset is currently associated with an article that is in the process of being published. Once the publication process is completed, a reference link will be added separately. Until that time, this dataset cannot be used for any academic purposes.

    The dataset contains 196.926 images and 10 csv files.

    The images derived from "the Image Matching Challenge PhotoTourism 2020 dataset"

    https://www.cs.ubc.ca/~kmyi/imw2020/data.html

    The csv files obtained from our work to show a comprehensive comparison of well-known conventional feature extractors/descriptors, including SIFT, SURF, BRIEF, ORB, BRISK, KAZE, AKAZE, FREAK, DAISY, FAST, and STAR.

    Just for gaussian blur there is another file to see.

    The images folder contains the images utilized for this study and derived ones originated from these images. (as a total 196.926 images)

    To use results or codes from this study to nite to cite:

    Please cite this to use anything from this dataset or codes: ISIK M. 2024. Comprehensive empirical evaluation of feature extractors in computer vision. PeerJ Computer Science 10:e2415 https://doi.org/10.7717/peerj-cs.2415

    THE COLUMN NAMES: img-1 and img-2 stands for the compared image names KP stands for keyPoints, goodMatches_normal stands for matching count with Brute Force Matcher GM stands for percentage goodMatches_knn stands for matching count with kNN Matcher img-1-D-time shows duration time for keyPoints extraction for img-1 img-2-D-time shows duration time for keyPoints extraction for img-2 (compared one) img-1-C-time shows duration time for comparing keyPoints for img-1 img-2-C-time shows duration time for comparing keyPoints for img-2 (compared one) total-D-time is the total of img-1-D-time and img-2-D-time. total-C-time is the total of img-1-C-time and img-2-C-time. matcher-time_normal stands for time duration for matching process with Brute Force Matcher

    matcher-time_knn stands for time duration for matching process with kNN Matcher

    More explanation will here soon.

  7. Data from: Segmentation evaluation.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haoyu Wu; Clare Flynn; Carole Hall; Christian Che-Castaldo; Dimitris Samaras; Mathew Schwaller; Heather J. Lynch (2024). Segmentation evaluation. [Dataset]. http://doi.org/10.1371/journal.pone.0311038.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Haoyu Wu; Clare Flynn; Carole Hall; Christian Che-Castaldo; Dimitris Samaras; Mathew Schwaller; Heather J. Lynch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Evaluation of the the Segment Anything Model (SAM) for penguin colony segmentation using mean intersection over union (mIoU), difference in perimeter to area ratio (PAR), area error, and accuracy (i.e. panels a-c in Figs 3 and 4 vs. ground truth). 95% confidence intervals are shown. An up (down) arrow indicates a measure where a larger (smaller) number is preferred.

  8. High Paying Low Volume Tourism in Northern Botswana

    • figshare.com
    xlsx
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christiaan Winterbach; Michael Somers (2016). High Paying Low Volume Tourism in Northern Botswana [Dataset]. http://doi.org/10.6084/m9.figshare.1160721.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Christiaan Winterbach; Michael Somers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Botswana
    Description

    Data set with tourism potential based on wildlife biomass and diversity for northern Botswana. Data is per 12' grid and includes mean wildlife biomass and number of species per grid for surveys from 1994 to 1999, and from 2001 to 2007.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski (2024). Dataset: Phototourism dataset. https://doi.org/10.57702/26hrl85q [Dataset]. https://service.tib.eu/ldmservice/dataset/phototourism-dataset

Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski (2024). Dataset: Phototourism dataset. https://doi.org/10.57702/26hrl85q

Explore at:
Dataset updated
Dec 16, 2024
Description

A dataset of images of buildings and landmarks, used for training and testing image-based rendering and view synthesis algorithms.

Search
Clear search
Close search
Google apps
Main menu