14 datasets found
  1. Most used programming languages among developers worldwide 2024

    • statista.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most used programming languages among developers worldwide 2024 [Dataset]. https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 19, 2024 - Jun 20, 2024
    Area covered
    Worldwide
    Description

    As of 2024, JavaScript and HTML/CSS were the most commonly used programming languages among software developers around the world, with more than 62 percent of respondents stating that they used JavaScript and just around 53 percent using HTML/CSS. Python, SQL, and TypeScript rounded out the top five most widely used programming languages around the world. Programming languages At a very basic level, programming languages serve as sets of instructions that direct computers on how to behave and carry out tasks. Thanks to the increased prevalence of, and reliance on, computers and electronic devices in today’s society, these languages play a crucial role in the everyday lives of people around the world. An increasing number of people are interested in furthering their understanding of these tools through courses and bootcamps, while current developers are constantly seeking new languages and resources to learn to add to their skills. Furthermore, programming knowledge is becoming an important skill to possess within various industries throughout the business world. Job seekers with skills in Python, R, and SQL will find their knowledge to be among the most highly desirable data science skills and likely assist in their search for employment.

  2. Most used web frameworks among developers worldwide 2024

    • statista.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most used web frameworks among developers worldwide 2024 [Dataset]. https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 19, 2024 - Jun 20, 2024
    Area covered
    World
    Description

    Node.js overtook React.js to become the most used web framework among software developers worldwide, as of 2024. According to the survey, 40.8 percent of respondents reported to be using Node.js, while around 39.5 percent were using React.js. Web framework A web framework, or what may sometimes be referred to as a web application framework is a software framework that supports the overall software development of web applications. Web frameworks are utilized to automate menial activities typically performed within web development. In other words, it simplifies the web development process and, therefore, makes it easier to build a website. JavaScript As aforementioned, before being overtaken by React.js, jQuery had been the most used web framework out of the millions of software developers throughout the world. Simply put, jQuery is a cross-platform JavaScript library, that simplifies the usage of JavaScript on websites. While jQuery may be losing popularity, JavaScript still remains one of the most popular programming languages used by software developers worldwide. Throughout the world, programming languages are associated with different salaries. JavaScript programmers are associated with a global salary of 65,580 U.S. dollars, while the salary associated with JavaScript programmers in the United States is significantly more, at 112,000 U.S. dollars.

  3. CommitBench

    • zenodo.org
    csv, json
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maximilian Schall; Maximilian Schall; Tamara Czinczoll; Tamara Czinczoll; Gerard de Melo; Gerard de Melo (2024). CommitBench [Dataset]. http://doi.org/10.5281/zenodo.10497442
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Maximilian Schall; Maximilian Schall; Tamara Czinczoll; Tamara Czinczoll; Gerard de Melo; Gerard de Melo
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    Dec 15, 2023
    Description

    Data Statement for CommitBench

    - Dataset Title: CommitBench
    - Dataset Curator: Maximilian Schall, Tamara Czinczoll, Gerard de Melo
    - Dataset Version: 1.0, 15.12.2023
    - Data Statement Author: Maximilian Schall, Tamara Czinczoll
    - Data Statement Version: 1.0, 16.01.2023

    EXECUTIVE SUMMARY

    We provide CommitBench as an open-source, reproducible and privacy- and license-aware benchmark for commit message generation. The dataset is gathered from github repositories with licenses that permit redistribution. We provide six programming languages, Java, Python, Go, JavaScript, PHP and Ruby. The commit messages in natural language are restricted to English, as it is the working language in many software development projects. The dataset has 1,664,590 examples that were generated by using extensive quality-focused filtering techniques (e.g. excluding bot commits). Additionally, we provide a version with longer sequences for benchmarking models with more extended sequence input, as well a version with

    CURATION RATIONALE

    We created this dataset due to quality and legal issues with previous commit message generation datasets. Given a git diff displaying code changes between two file versions, the task is to predict the accompanying commit message describing these changes in natural language. We base our GitHub repository selection on that of a previous dataset, CodeSearchNet, but apply a large number of filtering techniques to improve the data quality and eliminate noise. Due to the original repository selection, we are also restricted to the aforementioned programming languages. It was important to us, however, to provide some number of programming languages to accommodate any changes in the task due to the degree of hardware-relatedness of a language. The dataset is provides as a large CSV file containing all samples. We provide the following fields: Diff, Commit Message, Hash, Project, Split.

    DOCUMENTATION FOR SOURCE DATASETS

    Repository selection based on CodeSearchNet, which can be found under https://github.com/github/CodeSearchNet

    LANGUAGE VARIETIES

    Since GitHub hosts software projects from all over the world, there is no single uniform variety of English used across all commit messages. This means that phrasing can be regional or subject to influences from the programmer's native language. It also means that different spelling conventions may co-exist and that different terms may used for the same concept. Any model trained on this data should take these factors into account. For the number of samples for different programming languages, see Table below:

    LanguageNumber of Samples
    Java153,119
    Ruby233,710
    Go137,998
    JavaScript373,598
    Python472,469
    PHP294,394

    SPEAKER DEMOGRAPHIC

    Due to the extremely diverse (geographically, but also socio-economically) backgrounds of the software development community, there is no single demographic the data comes from. Of course, this does not entail that there are no biases when it comes to the data origin. Globally, the average software developer tends to be male and has obtained higher education. Due to the anonymous nature of GitHub profiles, gender distribution information cannot be extracted.

    ANNOTATOR DEMOGRAPHIC

    Due to the automated generation of the dataset, no annotators were used.

    SPEECH SITUATION AND CHARACTERISTICS

    The public nature and often business-related creation of the data by the original GitHub users fosters a more neutral, information-focused and formal language. As it is not uncommon for developers to find the writing of commit messages tedious, there can also be commit messages representing the frustration or boredom of the commit author. While our filtering is supposed to catch these types of messages, there can be some instances still in the dataset.

    PREPROCESSING AND DATA FORMATTING

    See paper for all preprocessing steps. We do not provide the un-processed raw data due to privacy concerns, but it can be obtained via CodeSearchNet or requested from the authors.

    CAPTURE QUALITY

    While our dataset is completely reproducible at the time of writing, there are external dependencies that could restrict this. If GitHub shuts down and someone with a software project in the dataset deletes their repository, there can be instances that are non-reproducible.

    LIMITATIONS

    While our filters are meant to ensure a high quality for each data sample in the dataset, we cannot ensure that only low-quality examples were removed. Similarly, we cannot guarantee that our extensive filtering methods catch all low-quality examples. Some might remain in the dataset. Another limitation of our dataset is the low number of programming languages (there are many more) as well as our focus on English commit messages. There might be some people that only write commit messages in their respective languages, e.g., because the organization they work at has established this or because they do not speak English (confidently enough). Perhaps some languages' syntax better aligns with that of programming languages. These effects cannot be investigated with CommitBench.

    Although we anonymize the data as far as possible, the required information for reproducibility, including the organization, project name, and project hash, makes it possible to refer back to the original authoring user account, since this information is freely available in the original repository on GitHub.

    METADATA

    License: Dataset under the CC BY-NC 4.0 license

    DISCLOSURES AND ETHICAL REVIEW

    While we put substantial effort into removing privacy-sensitive information, our solutions cannot find 100% of such cases. This means that researchers and anyone using the data need to incorporate their own safeguards to effectively reduce the amount of personal information that can be exposed.

    ABOUT THIS DOCUMENT

    A data statement is a characterization of a dataset that provides context to allow developers and users to better understand how experimental results might generalize, how software might be appropriately deployed, and what biases might be reflected in systems built on the software.

    This data statement was written based on the template for the Data Statements Version 2 schema. The template was prepared by Angelina McMillan-Major, Emily M. Bender, and Batya Friedman and can be found at https://techpolicylab.uw.edu/data-statements/ and was updated from the community Version 1 Markdown template by Leon Dercyznski.

  4. GIS_RS User Conference 2024

    • rmi-data.sprep.org
    • nauru-data.sprep.org
    • +7more
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). GIS_RS User Conference 2024 [Dataset]. https://rmi-data.sprep.org/index.php/dataset/gisrs-user-conference-2024
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    https://pacific-data.sprep.org/resource/private-data-license-agreement-0https://pacific-data.sprep.org/resource/private-data-license-agreement-0

    Area covered
    Pacific Region
    Description

    The report from the GIS conference that the SPREP GIS team participated in from 25 to 29 November

  5. C

    How to manage users on CI digital

    • dtechtive.com
    • find.data.gov.scot
    • +1more
    pdf
    Updated Mar 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Care Inspectorate (2021). How to manage users on CI digital [Dataset]. https://dtechtive.com/datasets/1817
    Explore at:
    pdf(2.105 MB)Available download formats
    Dataset updated
    Mar 23, 2021
    Dataset provided by
    Care Inspectorate
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Scotland
    Description

    There is no description available for this dataset.

  6. p

    Population and Housing Census 2016 - Cook Island

    • microdata.pacificdata.org
    Updated Aug 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cook Islands Statistics Office (CISO) (2019). Population and Housing Census 2016 - Cook Island [Dataset]. https://microdata.pacificdata.org/index.php/catalog/275
    Explore at:
    Dataset updated
    Aug 22, 2019
    Dataset authored and provided by
    Cook Islands Statistics Office (CISO)
    Time period covered
    2016
    Area covered
    Cook Islands
    Description

    Abstract

    This is the tenth census undertaken by the Statistics Office, the first being in 1971, and it has been held every five years ever since.

    The census counts all persons present in the Cook Islands on the census night of the 1st December 2016, including visitors temporary in the country. Cook Islanders who are living or are temporarily on vacation abroad are excluded.

    1. Organisation
      The overall organisation and control of the census, by virtue of the Statistics Act 2016, is vested upon the Government Statistician who, for the purpose of the census will be referred to as the Census Officer. A number of sections of the Act apply in carrying out the census. These include the “confidentiality” clause, which provides against the release or publication of any individual particulars and the offences and penalty clauses, which may be invoked against any persons failing to abide by the provisions of the Act.

    2. Scope and Coverage The scope of the early Cook Islands censuses was limited; in fact they consisted of head counts only. With the passage of time the census has expanded. Gradually, questions on sex, age, marital status, religion, education, employment, etc., have been included. Questions on unpaid work and income earned were included for the first time in the 1996 Census. In the 2016 Census, questions on relationship to head of household was expanded to reflect household living arrangement.
      A personal questionnaire is completed for every man, woman and child alive at midnight on census night within the geographical boundaries of the Cook Islands. The Census excludes those persons on foreign vessels, yachts and aircraft flying through or stopping temporarily (transit). A dwelling questionnaire is completed for every occupied dwelling as at midnight on census night.

    3. Objectives of the Census Taking account of the many comments, evaluations and recommendations arising from the 2011 Census, the design of the 2016 Census is based on a number of key strategic aims: 1) to give the highest priority to getting the national and local population counts right; 2) to maximise overall response and minimise differences in response rates in specific areas and among particular population sub-groups; 3) to build effective partnerships with other organisations, particularly local authorities, in planning and executing the field operation; 4) to provide high quality, value-for-money, statistics that meet user needs ; 5) to protect, and be seen to protect, confidential personal census information.

    4. The selection of topics and questions The topic content of the 2016 Census has been driven largely by the demands and requirements of users of census statistics, the evaluation of the 2016 and 2011 Census, and the priority of government as stated in the National Strategic Development Plan of the Cook Islands (NSDP) and the advice and guidance of organizations with experience of similar operations. These have been determined by extensive consultation with various Ministries of government and Non-Governmental Organizations (NGOs).

    Geographic coverage

    National coverage.

    Analysis unit

    Households and Individuals.

    Universe

    A Dwelling Questionnaire must be completed for every occupied dwelling as at midnight on Census Night. A Personal Questionnaire must be completed for each and every man, woman and child alive at midnight on Census Night within the geographical boundaries of the Cook Islands, excluding those persons on foreign vessels, yachts and aircraft flying through or stopping temporarily (transit).

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    -The selection of topics and questions: The topic content of the 2016 Census has been driven largely by the demands and requirements of users of census statistics, the evaluation of the 2016 and 2011 Census, and the priority of government as stated in the National Strategic Development Plan of the Cook Islands (NSDP) and the advice and guidance of organizations with experience of similar operations. These have been determined by extensive consultation with various Ministries of government and Non-Governmental Organizations (NGOs).

    -The census questions: The topics proposed for the census are those that have been shown to be most needed by the major users of census information and for which questions have been devised that can be expected to produce reliable and accurate data. In each case, no other comparable and accessible source of the information is available in combination with other items in the census. Consultation on the topic content for the 2016 Census has (as ever) resulted in a much larger demand for questions than would be possible to accommodate on a census form that households could reasonably be expected to complete. Consequently a number of difficult decisions have had to be made in assessing the different requirements for information and balancing the needs for change against continuity. In assessing which topics should be included in the census, Statistics Office has had to consider a number of factors. The criteria for evaluating the strength of users' requirements for information were that: ? there should be a clearly demonstrated and signi?cant need ? the information collected was of major national importance ? users' requirements could not adequately be met by information from other sources ? there should be a requirement for multivariate analysis (that is the ability to cross-analyse one variable against other), and ? there should be consideration of the ability for comparison with previous censuses wherever possible

    So therefore were 2 questionnaires or forms used for the Census and they are: 1. Dwelling form - consist of the housheholds information on dwelling type, land tenure, dwelling materials, water and sanitation, energy, household facilities, solid waste, agriculture and fishing activities and equipments, household consumption, communication technology etc. and household relationship to head 2. Personal form - consist of the every member/individuals of the households' information on nationality, migration, ethnic origin, marital status, religion, physically challenged, literacy, information technology, education, training attainment, occupation, industry, employment, income, smoking, drinking, cultural activities and fertility

    They were published in english and all are provided as external resources.

    Cleaning operations

    After sending the forms to Statistics New Zealand for scanning, Cook Islands Statistics Office (CISO) staff then carry out the coding of the industries and occupation and the first visual editing if there are some inconsistencies in the questionnaire mainly using the Access software, and the tabulations is carried-out in both Access and Excel ready for analysis and report writing.

  7. H

    Hyogo's No. of users of visiting nursing-care(2000 to 2018)

    • en.graphtochart.com
    csv
    Updated Apr 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LBB Limited Liability Company (2021). Hyogo's No. of users of visiting nursing-care(2000 to 2018) [Dataset]. https://en.graphtochart.com/japan/hyogo-no-of-users-of-visiting-nursing-care.php
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 24, 2021
    Dataset authored and provided by
    LBB Limited Liability Company
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2000 - 2018
    Area covered
    Description

    's No. of users of visiting nursing-care is 52,387person which is the 4th highest in Japan (by Prefecture). Transition Graphs and Comparison chart between Hyogo and Chiba(Chiba) and Hokkai do(Hokkai do)(Closest Prefecture in Population) are available. Various data can be downloaded and output in csv format for use in EXCEL free of charge.

  8. Web Development Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Web Development Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Spain, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/web-development-market-industry-analysis
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United States, Global
    Description

    Snapshot img

    Web Development Market Size 2025-2029

    The web development market size is forecast to increase by USD 40.98 billion at a CAGR of 10.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing digital transformation across industries and the integration of artificial intelligence (AI) into web applications. This trend is fueled by the need for businesses to enhance user experience, streamline operations, and gain a competitive edge in the market. Furthermore, the rapid evolution of technologies such as Progressive Web Apps (PWAs), serverless architecture, and the Internet of Things (IoT) is creating new opportunities for innovation and expansion. However, this market is not without challenges. The ever-changing technological landscape requires web developers to continuously update their skills and knowledge. Additionally, ensuring web applications are secure and compliant with data protection regulations is becoming increasingly complex.
    Companies seeking to capitalize on market opportunities and navigate challenges effectively should focus on building a team of skilled developers, investing in continuous learning and development, and prioritizing security and compliance in their web development projects. By staying abreast of the latest trends and technologies, and adapting quickly to market shifts, organizations can successfully navigate the dynamic the market and drive business growth.
    

    What will be the Size of the Web Development Market during the forecast period?

    Request Free Sample

    The market continues to evolve at an unprecedented pace, driven by advancements in technology and shifting consumer preferences. Key trends include the adoption of Agile methodologies, DevOps tools, and version control systems for streamlined project management. JavaScript frameworks, such as React and Angular, dominate front-end development, while Magento, Shopify, and WordPress lead in content management and e-commerce. Back-end development sees a rise in Python, PHP, and Ruby on Rails frameworks, enabling faster development and more efficient scalability. Interaction design, user-centered design, and mobile-first design prioritize user experience, while security audits, penetration testing, and disaster recovery solutions ensure website safety.
    Marketing automation, email marketing platforms, and CRM systems enhance digital marketing efforts, while social media analytics and Google Analytics provide valuable insights for data-driven decision-making. Progressive enhancement, headless CMS, and cloud migration further expand the market's potential. Overall, the market remains a dynamic, innovative space, with continuous growth fueled by evolving business needs and technological advancements.
    

    How is this Web Development Industry segmented?

    The web development industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    End-user
    
      Retail and e-commerce
      BFSI
      IT and telecom
      Healthcare
      Others
    
    
    Business Segment
    
      SMEs
      Large enterprise
    
    
    Service Type
    
      Front-End Development
      Back-End Development
      Full-Stack Development
      E-Commerce Development
    
    
    Deployment Type
    
      Cloud-Based
      On-Premises
    
    
    Technology Specificity
    
      JavaScript
      Python
      PHP
      Ruby
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Spain
        UK
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By End-user Insights

    The retail and e-commerce segment is estimated to witness significant growth during the forecast period. The market is experiencing significant growth due to the digital transformation sweeping various industries. E-commerce and retail sectors lead the market, driven by the increasing preference for online shopping and improved Internet penetration. To cater to this trend, businesses demand user-engaging web applications with smooth navigation, secure payment gateways, and seamless product search and purchase features. Mobile shopping's rise necessitates mobile app development and mobile-optimized websites. Agile development, microservices architecture, and UI/UX design are essential elements in creating engaging and efficient web solutions. Furthermore, AI, machine learning, and data analytics enable data-driven decision making, customer loyalty, and business intelligence.

    Web hosting, cloud computing, API integration, and growth hacking are other critical components. Ensuring web accessibility, data security, and e-commerce development is also crucial for businesses in the digital age. Online advertising, email marketing, content strategy, brand building, and data visualization are essential aspects of digital marketing. Serverless computin

  9. s

    International colour-emotion survey data from Colombia (CO)

    • swissubase.ch
    • doi.org
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). International colour-emotion survey data from Colombia (CO) [Dataset]. http://doi.org/10.23662/FORS-DS-892-2
    Explore at:
    Dataset updated
    Mar 12, 2025
    Area covered
    Colombia
    Description

    Available documentation: 1. Procedure (EN) = The PDF version of the online survey which can be accessed here: https://www2.unil.ch/onlinepsylab/colour/main.php. 2. Variable description = Documentation accompanying the data file, which explains each included variable. 3. Emotion and colour terms in all the languages that the survey is available in.

  10. C

    Item 6.5 - Appendix 1 - Involvement - Duty of User Focus

    • find.data.gov.scot
    • dtechtive.com
    pdf
    Updated Mar 25, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Care Inspectorate (2015). Item 6.5 - Appendix 1 - Involvement - Duty of User Focus [Dataset]. https://find.data.gov.scot/datasets/2600
    Explore at:
    pdf(0.064 MB)Available download formats
    Dataset updated
    Mar 25, 2015
    Dataset provided by
    Care Inspectorate
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Scotland
    Description

    There is no description available for this dataset.

  11. Population and Housing Census 2010 - Mongolia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population and Housing Census Bureau (2019). Population and Housing Census 2010 - Mongolia [Dataset]. https://catalog.ihsn.org/index.php/catalog/4572
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    Population and Housing Census Bureau
    Time period covered
    2010
    Area covered
    Mongolia
    Description

    Abstract

    The 2010 Population and Housing Census was Conducted between 11-17 November 2010. Over 750,000 household forms were completed by over 12,000 enumerators. More than 30,000 persons were directly involved in census conducting. The Population and Housing Census is the biggest event organized by the National Statistical Office. The unique feature of the Census is that it covers a wide range of entities starting from the primary unit of the local government up to the highest levels of the government as well as all citizens and conducted with the highest levels of organization. For the 2010 Population and Housing Census, the management team to coordinate the preparatory work was established, a detailed work plan was prepared and the plan was successfully implemented. The preliminary condition for the successful conduct of the Census was the development of a detailed plan. The well thought-out, step by step plan and carefully evidenced estimation of the expenditure and expected results were crucial for the successful Census. Every stage of the Census including preparation, training, enumeration, data processing, analysis, evaluation and dissemination of the results to users should be reflected in the Census Plan.

    Geographic coverage

    National

    Analysis unit

    • Household;
    • Indivudual.

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    Data Processing System

    The introduction of internet technology and GIS in the 2010 Population and Housing Census has made the census more technically advanced than the previous ones. Compared to the data processing of the 2000 Population and Housing Census the techniques and technological abilities of the NSO have advanced. The central office - National Statistical Office has used an internal network with 1000 Mbps speed, an independent internet line with 2048 Kbps speed and server computers with special equipments to ensure the reliable function of internal and external networks and confidentiality. The Law on Statistics, the Law on Population and Housing Census, the guidelines of the safety of statistical information systems and policies, the provisional guidelines on the use of census and survey raw data by the users, the guidelines on receiving, entering and validating census data have created a legal basis for census data processing.

    The data-entry network was set up separately from the network of the organization in order to ensure the safety and confidentiality of the data. The network was organized by using the windows platform and managed by a separate domain controller. Computers where the census data will be entered were linked to this server computer and a safety devise was set up to protect data loss and fixing. Data backup was done twice daily at 15:10 hour and 22:10 hour by auto archive and the full day archive was stored in tape at 23:00 hour everyday.

    The essential resources of important equipments and tools were prepared in order to provide continuous function of all equipment, to be able to carry out urgent repairs when needed, and to return the equipment to normal function. The computer where the census data would be entered and other necessary equipment were purchased by the state budget. For the data processing, the latest packages of software programs (CSPro, SPSS) were used. Also, software programs for the computer assisted coding and checking were developed on NET within the network framework.

    INTERNET CENSUS DATA PROCESSING

    One of the specific features of the 2010 Population and Housing Census was e-enumeration of Mongolian citizens living abroad for longer period. The development of a web based software and a website, and other specific measures were taken in line with the coordination of the General Authority for State Registration, the National Data Centre, and the Central Intelligence Agency in relation to ensuring the confidentiality of data. Some difficulties were encountered in sharing information between government agencies and ensuring the safety and confidentiality of census data due to limited professional and organizational experience, also because it was the first attempt to enumerate its citizens online.

    The main software to be used for online registration, getting permission to get login and filling in the census questionnaire online as well as receiving a reply was developed by the NSO using a symphony framework and the web service was provided by the National Data Centre. Due to the different technological conditions for citizens living and working abroad and the lack of certain levels of technological knowledge for some people the diplomatic representative offices from Mongolia in different countries printed out the online-census questionnaire and asked citizens to fill in and deliver them to the NSO in Mongolia. During the data processing stage these filled in questionnaires were key-entered into the system and checked against the main census database to avoid duplication.

    CODING OF DATA, DATA-ENTRY AND VALIDATION

    Additional 136 workers were contracted temporarily to complete the census data processing and disseminate the results to the users within a short period of time. Due to limited work spaces all of them were divided into six groups and worked in two shifts with equipments set up in three rooms and connected to the network. A total of six team leaders and 130 operators worked on data processing. The census questionnaires were checked by the ad hoc bureau staff at the respective levels and submitted to the NSO according to the intended schedule.

    These organizational measures were taken to ensure continuity of the census data processing that included stages of receiving the census documents, coding the questionnaire, key-entering into the system and validating the data. Coding was started on December 13, 2010 and the data-entry on January 7, 2011. Data entering of the post-enumeration survey and verification were completed by April 16, 2011. Data checking and validation started on April 18, 2011 and was completed on May 5, 2011. The automatic editing and imputation based on scripts written by the PHCB staff was completed on May 10, 2011 and the results tabulation was started.

  12. w

    World Bank Country Survey 2013 - Sierra Leone

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Mar 14, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Opinion Research Group (2014). World Bank Country Survey 2013 - Sierra Leone [Dataset]. https://microdata.worldbank.org/index.php/catalog/1884
    Explore at:
    Dataset updated
    Mar 14, 2014
    Dataset authored and provided by
    Public Opinion Research Group
    Time period covered
    2013
    Area covered
    Sierra Leone
    Description

    Abstract

    The World Bank is interested in gauging the views of clients and partners who are either involved in development in Sierra Leone or who observe activities related to social and economic development. The World Bank Country Assessment Survey is meant to give the World Bank's team that works in Sierra Leone, greater insight into how the Bank's work is perceived. This is one tool the World Bank uses to assess the views of its critical stakeholders. With this understanding, the World Bank hopes to develop more effective strategies, outreach and programs that support development in Sierra Leone. The World Bank commissioned an independent firm to oversee the logistics of this effort in Sierra Leone.

    The survey was designed to achieve the following objectives: - Assist the World Bank in gaining a better understanding of how stakeholders in Sierra Leone perceive the Bank; - Obtain systematic feedback from stakeholders in Sierra Leone regarding: · Their views regarding the general environment in Sierra Leone; · Their overall attitudes toward the World Bank in Sierra Leone; · Overall impressions of the World Bank's effectiveness and results, knowledge work and activities, and communication and information sharing in Sierra Leone; · Perceptions of the World Bank's future role in Sierra Leone. - Use data to help inform Sierra Leone team's strategy.

    Geographic coverage

    National

    Analysis unit

    Stakeholder

    Universe

    Stakeholders of the World Bank in Sierra Leone

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    In March-April 2013, 600 stakeholders of the World Bank in Sierra Leone were invited to provide their opinions on the Bank's assistance to the country by participating in a country survey. Participants in the survey were drawn from among the office of the President; the office of the Prime Minister; the office of a Minister; the office of a Parliamentarian; employees of a ministry, ministerial department, or implementation agency; consultants/ contractors working on World Bank-supported projects/programs; project management units (PMUs) overseeing implementation of a project; local government officials or staff; bilateral and multilateral agencies; private sector organizations; private foundations; the financial sector/private banks; NGOs; community-based organizations; the media; independent government institutions; trade unions; faith-based groups; academia/research institutes/think tanks; judiciary branches; and other organizations.

    Mode of data collection

    Mail Questionnaire [mail]

    Research instrument

    The Questionnaire consists of 8 Sections:

    A. General Issues Facing Sierra Leone: Respondents were asked to indicate whether Sierra Leone is headed in the right direction, what they thought were the top three most important development priorities in the country, and which areas would contribute most to reducing poverty and generating economic growth in Sierra Leone.

    B. Overall Attitudes toward the World Bank: Respondents were asked to rate their familiarity with the World Bank, the Bank's effectiveness in Sierra Leone, Bank staff preparedness to help Sierra Leone solve its development challenges, their agreement with various statements regarding the Bank's work, and the extent to which the Bank is an effective development partner. Respondents were asked to indicate the sectoral areas on which it would be most productive for the Bank to focus its resources, the Bank's greatest values and weaknesses in its work, the most effective instruments in helping to reduce poverty in Sierra Leone, with which stakeholder groups the Bank should collaborate more, and to what reasons respondents attributed failed or slow reform efforts.

    C. World Bank Effectiveness and Results: Respondents were asked to rate the extent to which the Bank's work helps achieve development results in Sierra Leone, the extent to which the Bank meets Sierra Leone's needs for knowledge services and financial instruments, and the Bank's level of effectiveness across forty-two development areas, such as education, energy, agricultural development, job creation/employment, infrastructure, and others.

    D. The World Bank's Knowledge: Respondents were asked to indicate how frequently they consult Bank knowledge work/activities, the areas on which the Bank should focus its research efforts, and to rate the effectiveness and quality of the Bank's knowledge work/activities, including how significant of a contribution it makes to development results and its technical quality.

    E. Working with the World Bank: Respondents were asked to rate their level of agreement with a series of statements regarding working with the Bank, such as the World Bank's "Safeguard Policy" requirements being reasonable, the Bank imposing reasonable conditions on its lending, disbursing funds promptly, increasing Sierra Leone's institutional capacity, and providing effective implementation support. Respondents also were asked that to what extent they believed the Bank was adequately staffed in Sierra Leone.

    F. The Future Role of the World Bank in Sierra Leone: Respondents were asked to rate how significant a role the Bank should play in Sierra Leone's development in the near future and to indicate what the Bank should do to make itself of greater value. They were also asked about the effectiveness of the donors in their work to see through development results on the ground and the effectiveness of the Bank in helping forge regional economic integration.

    G. Communication and Information Sharing: Respondents were asked to indicate how they get information about economic and social development issues, how they prefer to receive information from the Bank, and their usage and evaluation of the Bank's websites. Respondents were asked about their awareness of the Bank's Access to Information policy, past information requests from the Bank, and their level of agreement that they use more data from the World Bank as a result of the Bank's Open Data policy. Respondents were also asked about their level of agreement that they know how to find information from the Bank and that the Bank is responsive to information requests.

    H. Background Information: Respondents were asked to indicate their current position, specialization, whether they professionally collaborate with the World Bank, their exposure to the Bank in Sierra Leone, and their geographic location.

    Response rate

    A total of 340 stakeholders participated in the survey (57% response rate).

  13. Socio-Economic Panel Survey 2021-2022 - Ethiopia

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethiopian Statistical Service (ESS) (2024). Socio-Economic Panel Survey 2021-2022 - Ethiopia [Dataset]. https://microdata.worldbank.org/index.php/catalog/6161
    Explore at:
    Dataset updated
    Jan 25, 2024
    Dataset provided by
    Central Statistical Agencyhttps://ess.gov.et/
    Authors
    Ethiopian Statistical Service (ESS)
    Time period covered
    2021 - 2022
    Area covered
    Ethiopia
    Description

    Abstract

    The Ethiopia Socioeconomic Panel Survey (ESPS) is a collaborative project between the Ethiopian Statistical Service (ESS) and the World Bank Living Standards Measurement Study-Integrated Surveys on Agriculture (LSMS-ISA) team. The objective of the LSMS-ISA is to collect multi-topic, household-level panel data with a special focus on improving agriculture statistics and generating a clearer understanding of the link between agriculture and other sectors of the economy. The project also aims to build capacity, share knowledge across countries, and improve survey methodologies and technology. ESPS is a long-term project to collect panel data. The project responds to the data needs of the country, given the dependence of a high percentage of households on agriculture activities in the country. The ESPS collects information on household agricultural activities along with other information on the households like human capital, other economic activities, and access to services and resources. The ability to follow the same households over time makes the ESPS a new and powerful tool for studying and understanding the role of agriculture in household welfare over time as it allows analyses of how households add to their human and physical capital, how education affects earnings, and the role of government policies and programs on poverty, inter alia. The ESPS is the first-panel survey to be carried out by the Ethiopian Statistical Service that links a multi-topic household questionnaire with detailed data on agriculture.

    Geographic coverage

    National Regional Urban and Rural

    Analysis unit

    • Household
    • Individual
    • Community

    Universe

    The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame for the second phase ESPS panel survey is based on the updated 2018 pre-census cartographic database of enumeration areas by the Ethiopian Statistical Service (ESS). The sample is a two-stage stratified probability sample. The ESPS EAs in rural areas are the subsample of the AgSS EA sample. That means the first stage of sampling in the rural areas entailed selecting enumeration areas (i.e., the primary sampling units) using simple random sampling (SRS) from the sample of the 2018 AgSS enumeration areas (EAs). The first stage of sampling for urban areas is selecting EAs directly from the urban frame of EAs within each region using systematic PPS. This is designed to automatically result in a proportional allocation of the urban sample by zone within each region. Following the selection of sample EAs, they are allocated by urban rural strata using power allocation which is happened to be closer to proportional allocation.

    The second stage of sampling is the selection of households to be surveyed in each sampled EA using systematic random sampling. From the rural EAs, 10 agricultural households are selected as a subsample of the households selected for the AgSS, and 2 non-agricultural households are selected from the non-agriculture households list in that specific EA. The non-agriculture household selection follows the same sampling method i.e., systematic random sampling. One important issue to note in ESPS sampling is that the total number of agriculture households per EA remains at 10 even though there are less than 2 or no non-agriculture households are listed and sampled in that EA. For urban areas, a total of 15 households are selected per EA regardless of the households’ economic activity. The households are selected using systematic random sampling from the total households listed in that specific EA.

    The ESPS-5 kept all the ESPS-4 samples except for those in the Tigray region and a few other places. A more detailed description of the sample design is provided in Section 3 of the Basic Information Document provided under the Related Materials tab.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The ESPS-5 survey consisted of four questionnaires (household, community, post-planting, and post-harvest questionnaires), similar to those used in previous waves but revised based on the results of those waves and on the need for new data they revealed. The following new topics are included in ESPS-5:

    a. Dietary Quality: This module collected information on the household’s consumption of specified food items.

    b. Food Insecurity Experience Scale (FIES): In this round the survey has implemented FIES. The scale is based on the eight food insecurity experience questions on the Food Insecurity Experience Scale | Voices of the Hungry | Food and Agriculture Organization of the United Nations (fao.org).

    c. Basic Agriculture Information: This module is designed to collect minimal agriculture information from households. It is primarily for urban households. However, it was also used for a few rural households where it was not possible to implement the full agriculture module due to security reasons and administered for urban households. It asked whether they had undertaken any agricultural activity, such as crop farming and tending livestock) in the last 12 months. For crop farming, the questions were on land tenure, crop type, input use, and production. For livestock there were also questions on their size and type, livestock products, and income from sales of livestock or livestock products.

    d. Climate Risk Perception: This module was intended to elicit both rural and urban households perceptions, beliefs, and attitudes about different climate-related risks. It also asked where and how households were obtaining information on climate and weather-related events.

    e. Agriculture Mechanization and Video-Based Agricultural Extension: The rural area community questionnaire covered these areas rural areas. On mechanization the questions related to the penetration, availability and accessibility of agricultural machinery. Communities were also asked if they had received video-based extension services.

    Cleaning operations

    Final data cleaning was carried out on all data files. Only errors that could be clearly and confidently fixed by the team were corrected; errors that had no clear fix were left in the datasets. Cleaning methods for these errors are left up to the data user.

    Response rate

    ESPS-5 planned to interview 7,527 households from 565 enumeration areas (EAs) (Rural 316 EAs and Urban 249 EAs). However, due to the security situation in northern Ethiopia and to a lesser extent in the western part of the country, only a total of 4999 households from 438 EAs were interviewed for both the agriculture and household modules. The security situation in northern parts of Ethiopia meant that, in Tigray, ESPS-5 did not cover any of the EAs and households previously sampled. In Afar, while 275 households in 44 EAs had been covered by both the ESPS-4 agriculture and household modules, in ESPS-5 only 252 households in 22 EAs were covered by both modules. During the fifth wave, security was also a problem in both the Amhara and Oromia regions, so there was a comparable reduction in the number of households and EAs covered there.

    More detailed information is available in the BID.

  14. Census 2011 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2014). Census 2011 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/2067
    Explore at:
    Dataset updated
    Sep 18, 2014
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2011
    Area covered
    South Africa
    Description

    Abstract

    Censuses are principal means of collecting basic population and housing statistics required for social and economic development, policy interventions, their implementation and evaluation.The census plays an essential role in public administration. The results are used to ensure: • equity in distribution of government services • distributing and allocating government funds among various regions and districts for education and health services • delineating electoral districts at national and local levels, and • measuring the impact of industrial development, to name a few The census also provides the benchmark for all surveys conducted by the national statistical office. Without the sampling frame derived from the census, the national statistical system would face difficulties in providing reliable official statistics for use by government and the public. Census also provides information on small areas and population groups with minimum sampling errors. This is important, for example, in planning the location of a school or clinic. Census information is also invaluable for use in the private sector for activities such as business planning and market analyses. The information is used as a benchmark in research and analysis.

    Census 2011 was the third democratic census to be conducted in South Africa. Census 2011 specific objectives included: - To provide statistics on population, demographic, social, economic and housing characteristics; - To provide a base for the selection of a new sampling frame; - To provide data at lowest geographical level; and - To provide a primary base for the mid-year projections.

    Geographic coverage

    National

    Analysis unit

    Households, Individuals

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    About the Questionnaire : Much emphasis has been placed on the need for a population census to help government direct its development programmes, but less has been written about how the census questionnaire is compiled. The main focus of a population and housing census is to take stock and produce a total count of the population without omission or duplication. Another major focus is to be able to provide accurate demographic and socio-economic characteristics pertaining to each individual enumerated. Apart from individuals, the focus is on collecting accurate data on housing characteristics and services.A population and housing census provides data needed to facilitate informed decision-making as far as policy formulation and implementation are concerned, as well as to monitor and evaluate their programmes at the smallest area level possible. It is therefore important that Statistics South Africa collects statistical data that comply with the United Nations recommendations and other relevant stakeholder needs.

    The United Nations underscores the following factors in determining the selection of topics to be investigated in population censuses: a) The needs of a broad range of data users in the country; b) Achievement of the maximum degree of international comparability, both within regions and on a worldwide basis; c) The probable willingness and ability of the public to give adequate information on the topics; and d) The total national resources available for conducting a census.

    In addition, the UN stipulates that census-takers should avoid collecting information that is no longer required simply because it was traditionally collected in the past, but rather focus on key demographic, social and socio-economic variables.It becomes necessary, therefore, in consultation with a broad range of users of census data, to review periodically the topics traditionally investigated and to re-evaluate the need for the series to which they contribute, particularly in the light of new data needs and alternative data sources that may have become available for investigating topics formerly covered in the population census. It was against this background that Statistics South Africa conducted user consultations in 2008 after the release of some of the Community Survey products. However, some groundwork in relation to core questions recommended by all countries in Africa has been done. In line with users' meetings, the crucial demands of the Millennium Development Goals (MDGs) should also be met. It is also imperative that Stats SA meet the demands of the users that require small area data.

    Accuracy of data depends on a well-designed questionnaire that is short and to the point. The interview to complete the questionnaire should not take longer than 18 minutes per household. Accuracy also depends on the diligence of the enumerator and honesty of the respondent.On the other hand, disadvantaged populations, owing to their small numbers, are best covered in the census and not in household sample surveys.Variables such as employment/unemployment, religion, income, and language are more accurately covered in household surveys than in censuses.Users'/stakeholders' input in terms of providing information in the planning phase of the census is crucial in making it a success. However, the information provided should be within the scope of the census.

    1. The Household Questionnaire is divided into the following sections:
    2. Household identification particulars
    3. Individual particulars Section A: Demographics Section B: Migration Section C: General Health and Functioning Section D: Parental Survival and Income Section E: Education Section F: Employment Section G: Fertility (Women 12-50 Years Listed) Section H: Housing, Household Goods and Services and Agricultural Activities Section I: Mortality in the Last 12 Months The Household Questionnaire is available in Afrikaans; English; isiZulu; IsiNdebele; Sepedi; SeSotho; SiSwati;Tshivenda;Xitsonga

    4. The Transient and Tourist Hotel Questionnaire (English) is divided into the following sections:

    5. Name, Age, Gender, Date of Birth, Marital Status, Population Group, Country of birth, Citizenship, Province.

    6. The Questionnaire for Institutions (English) is divided into the following sections:

    7. Particulars of the institution

    8. Availability of piped water for the institution

    9. Main source of water for domestic use

    10. Main type of toilet facility

    11. Type of energy/fuel used for cooking, heating and lighting at the institution

    12. Disposal of refuse or rubbish

    13. Asset ownership (TV, Radio, Landline telephone, Refrigerator, Internet facilities)

    14. List of persons in the institution on census night (name, date of birth, sex, population group, marital status, barcode number)

    15. The Post Enumeration Survey Questionnaire (English)

    These questionnaires are provided as external resources.

    Cleaning operations

    Data editing and validation system The execution of each phase of Census operations introduces some form of errors in Census data. Despite quality assurance methodologies embedded in all the phases; data collection, data capturing (both manual and automated), coding, and editing, a number of errors creep in and distort the collected information. To promote consistency and improve on data quality, editing is a paramount phase in identifying and minimising errors such as invalid values, inconsistent entries or unknown/missing values. The editing process for Census 2011 was based on defined rules (specifications).

    The editing of Census 2011 data involved a number of sequential processes: selection of members of the editing team, review of Census 2001 and 2007 Community Survey editing specifications, development of editing specifications for the Census 2011 pre-tests (2009 pilot and 2010 Dress Rehearsal), development of firewall editing specifications and finalisation of specifications for the main Census.

    Editing team The Census 2011 editing team was drawn from various divisions of the organisation based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors. Census 2011 editing team was drawn from various divisions of the organization based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors.

    The Census 2011 questionnaire was very complex, characterised by many sections, interlinked questions and skipping instructions. Editing of such complex, interlinked data items required application of a combination of editing techniques. Errors relating to structure were resolved using structural query language (SQL) in Oracle dataset. CSPro software was used to resolve content related errors. The strategy used for Census 2011 data editing was implementation of automated error detection and correction with minimal changes. Combinations of logical and dynamic imputation/editing were used. Logical imputations were preferred, and in many cases substantial effort was undertaken to deduce a consistent value based on the rest of the household’s information. To profile the extent of changes in the dataset and assess the effects of imputation, a set of imputation flags are included in the edited dataset. Imputation flags values include the following: 0 no imputation was performed; raw data were preserved 1 Logical editing was performed, raw data were blank 2 logical editing was performed, raw data were not blank 3 hot-deck imputation was performed, raw data were blank 4 hot-deck imputation was performed, raw data were not blank

    Data appraisal

    Independent monitoring and evaluation of Census field activities Independent monitoring of the Census 2011 field activities was carried out by a team of 31 professionals and 381 Monitoring

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Most used programming languages among developers worldwide 2024 [Dataset]. https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
Organization logo

Most used programming languages among developers worldwide 2024

Explore at:
81 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 6, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
May 19, 2024 - Jun 20, 2024
Area covered
Worldwide
Description

As of 2024, JavaScript and HTML/CSS were the most commonly used programming languages among software developers around the world, with more than 62 percent of respondents stating that they used JavaScript and just around 53 percent using HTML/CSS. Python, SQL, and TypeScript rounded out the top five most widely used programming languages around the world. Programming languages At a very basic level, programming languages serve as sets of instructions that direct computers on how to behave and carry out tasks. Thanks to the increased prevalence of, and reliance on, computers and electronic devices in today’s society, these languages play a crucial role in the everyday lives of people around the world. An increasing number of people are interested in furthering their understanding of these tools through courses and bootcamps, while current developers are constantly seeking new languages and resources to learn to add to their skills. Furthermore, programming knowledge is becoming an important skill to possess within various industries throughout the business world. Job seekers with skills in Python, R, and SQL will find their knowledge to be among the most highly desirable data science skills and likely assist in their search for employment.

Search
Clear search
Close search
Google apps
Main menu