46 datasets found
  1. u

    Population Projections (City Area) - RTP 2023

    • data.wfrc.utah.gov
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Population Projections (City Area) - RTP 2023 [Dataset]. https://data.wfrc.utah.gov/items/b3b4e6cf89ce469cbbb78fa7fabc311c
    Explore at:
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  2. w

    Household Projections (City Area) - RTP 2023

    • data.wfrc.org
    • data.wfrc.utah.gov
    Updated May 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Household Projections (City Area) - RTP 2023 [Dataset]. https://data.wfrc.org/datasets/4394b3c99d81415a91b7f43576557e64
    Explore at:
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  3. u

    Population Projections (City Area) - RTP 2019

    • data.wfrc.utah.gov
    Updated Apr 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2019). Population Projections (City Area) - RTP 2019 [Dataset]. https://data.wfrc.utah.gov/datasets/population-projections-city-area-rtp-2019
    Explore at:
    Dataset updated
    Apr 17, 2019
    Dataset authored and provided by
    Wasatch Front Regional Council
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019: This dataset now includes projections for all populated statewide traffic analysis zones (TAZs). Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org. Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas. These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process. As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes. Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services; Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres). ‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  4. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  5. w

    Industrial Jobs Projections (TAZ) - RTP 2023

    • data.wfrc.org
    Updated May 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Industrial Jobs Projections (TAZ) - RTP 2023 [Dataset]. https://data.wfrc.org/datasets/5f34c1d4f12f4f319f0c29677dd3461c
    Explore at:
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  6. g

    Data from: Victims' Ratings of Police Services in New York and Texas,...

    • gimi9.com
    • icpsr.umich.edu
    • +1more
    Updated Feb 5, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2001). Victims' Ratings of Police Services in New York and Texas, 1994-1995 Survey [Dataset]. https://gimi9.com/dataset/data-gov_victims-ratings-of-police-services-in-new-york-and-texas-1994-1995-survey-ac5ab/
    Explore at:
    Dataset updated
    Feb 5, 2001
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Texas, New York
    Description

    The Family Violence Prevention and Services Act of 1984 (FVPSA) provided funding, through the Office of Victims of Crime in the United States Department of Justice, for 23 law enforcement training projects across the nation from 1986 to 1992. FVPSA was enacted to assist states in (1) developing and maintaining programs for the prevention of family violence and for the provision of shelter to victims and their dependents and (2) providing training and technical assistance for personnel who provide services for victims of family violence. The National Institute of Justice awarded a grant to the Urban Institute in late 1992 to evaluate the police training projects. One of the program evaluation methods the Urban Institute used was to conduct surveys of victims in New York and Texas. The primary objectives of the survey were to find out, from victims who had contact with law enforcement officers in the pre-training period and/or in the post-training period, what their experiences and evaluations of law enforcement services were, how police interventions had changed over time, and how the quality of services and changes related to the police training funded under the FVPSA. Following the conclusion of training, victims of domestic assault in New York and Texas were surveyed through victim service programs across each state. Similar, but not identical, instruments were used at the two sites. Service providers were asked to distribute the questionnaires to victims of physical or sexual abuse who had contact with law enforcement officers. The survey instruments were developed to obtain information and victim perceptions of the following key subject areas: history of abuse, characteristics of the victim-abuser relationship, demographic characteristics of the abuser and the victim, history of law enforcement contacts, services received from law enforcement officers, and victims' evaluations of these services. Variables on history of abuse include types of abuse experienced, first and last time physically or sexually abused, and frequency of abuse. Characteristics of the victim-abuser relationship include length of involvement with the abuser, living arrangement and relationship status at time of last abuse, number of children the victim had, and number of children at home at the time of last abuse. Demographic variables provide age, race/ethnicity, employment status, and education level of the abuser and the victim. Variables on the history of law enforcement contacts and services received include number of times law enforcement officers were called because of assaults on the victim, number of times law enforcement officers actually came to the scene, first and last time officers came to the scene, number of times officers were involved because of assaults on the victim, number of times officers were involved in the last 12 months, and type of law enforcement agencies the officers were from. Data are also included on city size by population, city median household income, county population density, county crime rate, and region of state of the responding law enforcement agencies. Over 30 variables record the victims' evaluations of the officers' responsiveness, helpfulness, and attitudes.

  7. w

    Industrial Jobs Projections (City Area) - RTP 2019

    • data.wfrc.org
    Updated Apr 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2019). Industrial Jobs Projections (City Area) - RTP 2019 [Dataset]. https://data.wfrc.org/maps/wfrc::industrial-jobs-projections-city-area-rtp-2019
    Explore at:
    Dataset updated
    Apr 17, 2019
    Dataset authored and provided by
    Wasatch Front Regional Council
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019: This dataset now includes projections for all populated statewide traffic analysis zones (TAZs). Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org. Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas. These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process. As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes. Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services; Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres). ‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  8. u

    Typical Jobs Projections (City Area) - RTP 2023

    • data.wfrc.utah.gov
    Updated May 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Typical Jobs Projections (City Area) - RTP 2023 [Dataset]. https://data.wfrc.utah.gov/datasets/typical-jobs-projections-city-area-rtp-2023
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  9. c

    2018 Housing Market Typologies

    • data.cityofrochester.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 3, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). 2018 Housing Market Typologies [Dataset]. https://data.cityofrochester.gov/datasets/2018-housing-market-typologies
    Explore at:
    Dataset updated
    Mar 3, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    DisclaimerBefore using this layer, please review the 2018 Rochester Citywide Housing Market Study for the full background and context that is required for interpreting and portraying this data. Please click here to access the study. Please also note that the housing market typologies were based on analysis of property data from 2008 to 2018, and is a snapshot of market conditions within that time frame. For an accurate depiction of current housing market typologies, this analysis would need to be redone with the latest available data.About the DataThis is a webmap of a polygon feature layer containing the boundaries of all census blockgroups in the city of Rochester. Beyond the unique identifier fields including GEOID, the only other field is the housing market typology for that blockgroup. The map is visualized based on market typology score with strongest market in pink, and weakest market in dark blue.Information from the 2018 Housing Market Study- Housing Market TypologiesThe City of Rochester commissioned a Citywide Housing Market Study in 2018 as a technical study to help inform development of the City's new Comprehensive Plan, Rochester 2034 , and retained czb, LLC - a firm with national expertise based in Alexandria, VA - to perform the analysis.Any understanding of Rochester’s housing market – and any attempt to develop strategies to influence the market in ways likely to achieve community goals – must begin with recognition that market conditions in the city are highly uneven. On some blocks, competition for real estate is strong and expressed by pricing and investment levels that are above city averages. On other blocks, private demand is much lower and expressed by above average levels of disinvestment and physical distress. Still other blocks are in the middle – both in terms of condition of housing and prevailing prices. These block-by-block differences are obvious to most residents and shape their options, preferences, and actions as property owners and renters. And, importantly, these differences shape the opportunities and challenges that exist in each neighborhood, the types of policy and investment tools to utilize in response to specific needs, and the level and range of available resources, both public and private, to meet those needs. The City of Rochester has long appreciated that a one-size-fits-all approach to housing and neighborhood strategy is inadequate in such a diverse market environment, and that is no less true today. To concisely describe distinct market conditions and trends across the city in this study, a Housing Market Typology was developed using a wide range of indicators to gauge market health and investment behaviors. This section of the Citywide Housing Market Study introduces the typology and its components. In later sections, the typology is used as a tool for describing and understanding demographic and economic patterns within the city, the implications of existing market patterns on strategy development, and how existing or potential policy and investment tools relate to market conditions.Overview of Housing Market Typology PurposeThe Housing Market Typology in this study is a tool for understanding recent market conditions and variations within Rochester and informing housing and neighborhood strategy development. As with any typology, it is meant to simplify complex information into a limited number of meaningful categories to guide action. Local context and knowledge remain critical to understanding market conditions and should always be used alongside the typology to maximize its usefulness.Geographic Unit of Analysis The Block Group – a geographic unit determined by the U.S. Census Bureau – is the unit of analysis for this typology, which utilizes parcel-level data. There are over 200 Block Groups in Rochester, most of which cover a small cluster of city blocks and are home to between 600 and 3,000 residents. For this tool, the Block Group provides geographies large enough to have sufficient data to analyze and small enough to reveal market variations within small areas.Four Components for CalculationAnalysis of multiple datasets led to the identification of four typology components that were most helpful in drawing out market variations within the city:• Terms of Sale• Market Strength• Bank Foreclosures• Property DistressThose components are described one-by-one on in the full study document (LINK), with detailed methodological descriptions provided in the Appendix.A Spectrum of Demand The four components were folded together to create the Housing Market Typology. The seven categories of the typology describe a spectrum of housing demand – with lower scores indicating higher levels of demand, and higher scores indicating weaker levels of demand. Typology 1 are areas with the highest demand and strongest market, while typology 3 are the weakest markets. For more information please visit: https://www.cityofrochester.gov/HousingMarketStudy2018/

  10. Total population of Mexico 2030

    • statista.com
    • ai-chatbox.pro
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of Mexico 2030 [Dataset]. https://www.statista.com/statistics/263748/total-population-of-mexico/
    Explore at:
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Mexico
    Description

    The statistic depicts the total population of Mexico from 2020 to 2024, with projections up until 2030. In 2020, Mexico's total population amounted to about 128.21 million people. Total population of Mexico The total population of Mexico was expected to reach 116.02 million people by the end of 2013. Despite being the source of one of the largest migration flows in the world, Mexico has managed to maintain around a 1.25 percent population growth rate for the last several years, roughly the same growth rate as India. Among the largest cities in Mexico, Mexico City is leading with more than 8.5 million inhabitants. A slowly declining fertility rate still holds above the replacement rate, and life expectancy is growing, expanding the population from both ends of the age spectrum. With the rising life expectancy, the median age of Mexican residents has also increased, and an increasing stream of immigrants from the financially-troubled Spain has also boosted population numbers. The majority of the Mexican population is Roman Catholic, owing to its colonial Spanish background. Spanish is the predominant language, with several regional and local dialects spoken, but a number of indigenous languages, such as Nahuatl, survive and are also spoken around Mexico. One worrying and relatively recent trend in Mexico is the growing share of the population becoming overweight or obese. It is not entirely clear what sort of effect the obesity epidemic is going to have on Mexican population numbers in the long run, but is starting to manifest itself not just in physical appearance, but in the increased rates of heart disease, hypertension, and diabetes. In fact, diabetes was one of the top causes of deaths for Mexicans in recent years.

  11. w

    Household Projections (TAZ) - RTP 2019

    • data.wfrc.org
    • data.wfrc.utah.gov
    • +1more
    Updated Jun 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2020). Household Projections (TAZ) - RTP 2019 [Dataset]. https://data.wfrc.org/items/ee42274de5bd42e7b04b453e07ffff67
    Explore at:
    Dataset updated
    Jun 12, 2020
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019:This dataset now includes projections for all populated statewide traffic analysis zones (TAZs).Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below.Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org.Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services;Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  12. u

    Population Projections (TAZ) - RTP 2019

    • data.wfrc.utah.gov
    Updated Apr 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2019). Population Projections (TAZ) - RTP 2019 [Dataset]. https://data.wfrc.utah.gov/items/5ecffa58a88c4237a5ef535491082aeb
    Explore at:
    Dataset updated
    Apr 17, 2019
    Dataset authored and provided by
    Wasatch Front Regional Council
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019: This dataset now includes projections for all populated statewide traffic analysis zones (TAZs). Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org. Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas. These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process. As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes. Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services; Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres). ‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  13. n

    Survey, waiver, and data evaluating human-nature connection in urban parks

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sheryl Hayes Hursh (2023). Survey, waiver, and data evaluating human-nature connection in urban parks [Dataset]. http://doi.org/10.5061/dryad.h70rxwdqr
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 15, 2023
    Dataset provided by
    University of Wisconsin–Madison
    Authors
    Sheryl Hayes Hursh
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Human-nature connection (HNC) is a concept derived from investigating the formulation and extent of an individual’s identification with the natural world. This relationship is often characterized as an emotional bond to nature that develops from the contextualized, physical interactions of an individual, beginning in childhood. This outcome presents complexity in evaluating the development of HNC but suggests optimism in the pathways for enhancing lifelong HNC. As urban populations increase, there is a growing recognition worldwide of the potential for urban green space to cultivate HNC and thus shape the environmental identity of urban residents. The results of an online survey of 560 visitors to three community parks (managed primarily to provide a variety of physical, social and cultural opportunities) and three conservation parks (managed primarily to protect native plants and wildlife) in Madison, Wisconsin, USA, were used to investigate HNC. Linear mixed effects models evaluated visitors’ HNC as a function of their (1) literacy and sentiment about wildlife species, (2) park experience, (3) number and frequency of nine childhood and adult recreation experiences, and (4) demographics. Across the park response groups, the number and frequency of childhood and adult recreation experiences was significantly associated with HNC, and this positive association persisted in multiple recreation activities. Furthermore, species literacy and sentiment, visiting a park for 'Nature', and frequent and extended visitation also was significantly associated with HNC by park type. Our research demonstrates the importance of lifelong recreation experiences in the development and enhancement of HNC and provides evidence for differences in the expression of HNC associated with particular attributes of urban park visitors and their views of wildlife. Methods Methodology Study Area Madison has a population of approximately 270,000 residents, covers approximately 260 km2, and is located in south central Wisconsin, USA (US Census Bureau, 2022). Madison is currently the fastest growing city in Wisconsin and is home to the state capital and the University of Wisconsin-Madison (US Census Bureau, 2022). The study area is within the Yahara Watershed, now largely dominated by agricultural and urban land cover, and experiences four distinct seasons (Carpenter et al., 2007, Wisconsin State Climatology Office, 2010).
    The six selected parks were based on their classification as a community or conservation park; an estimated visitation rate; a central, western, or eastern location in Madison; and approval from the Madison Parks Division of the City of Madison (Figure 1). The size of the community parks ranged from 19.07 ha to 101.50 ha, and the size of the conservation parks ranged from 24.39 ha to 39.17 ha. The parks can be broadly described as mixed forest ecosystems with open grass areas and low levels of pavement and structural development. Conservation parks contain native grasslands whereas community parks may contain native grasslands and/or mowed turf. By definition, conservation parks are managed to protect native plant and wildlife species, resulting in the inclusion of vegetation and management practices supporting that objective (City of Madison Parks Division, 2022). As a result of their conservation status, recreation therein is limited to physical activities such as hiking and snowshoeing and nature-based activities such as watching birds / wildlife and photography. Dogs are not allowed in conservation parks. Community parks are designed to provide a variety of physical, social, and cultural opportunities, including athletic fields and courts, playgrounds, and picnic shelters. Community parks allow dogs that are leashed and licensed (City of Madison Parks Division, 2022).
    Study Population and Survey We conducted an online survey to park visitors in three conservation parks and three community parks in Madison. Our research design was approved by the University of Wisconsin Education and Social/Behavioral Science Institutional Review Board as exempted research. We developed the survey in Google Forms and administered it in the parks using a park-specific quick response (QR) code printed either (1) on posters that were statically accessible to park visitors throughout the study period or (2) on postcards dynamically handed to park visitors at selected times during the study period. The posters were visible outdoors in all six parks from 2021-09-04 through 2021-10-24 (high-use fall period) and from 2022-06-09 through 2022-08-24 (high-use summer period). Postcards were distributed in the six parks on four Saturdays in both September and July from 10.00 to 12.00. These dates and times were selected to coincide with the days and times with the highest number of park visitors, the availability of surveyors, and the approval of the Madison City Parks Division. Each postcard had a unique three-digit number required to access the online survey. Adults (18 years or older) were approached by the surveyor (lead author and/or student assistants trained in research ethics and project specifics) and invited to participate. After verbally agreeing to participate (standard approach for exempted research), each potential respondent was asked three questions to check for nonresponse bias: (1) zip code, (2) year of birth, and (3) main reason for visitation. For poster and postcard respondents who continued on to take the online survey, the first question was a screening for informed consent, with only those who actively acknowledged consent continuing into the study’s content questions.
    The online survey consisted of 30 questions, grouped into four categories: (1) literacy and sentiment about wildlife species, (2) recreation and park experience, (3) HNC, and (4) demographics. For species literacy and sentiment, respondents were asked questions evaluating (1) the correct photographic identification of six mammal species, each considered a generalist and likely present in the study parks, and (2) visitor sentiment about each species (Figure 2). For recreation activity, respondents were asked questions about (1) the number and frequency of childhood and adult experiences with bird / wildlife watching, camping, canoeing / kayaking, fishing, gardening, hiking, hunting, nature photography, and picnicking; (2) the main reason for visitation; (3) prior visitation; (4) length of visit; and (5) distance of residence to the park. For HNC, the abbreviated six-item short form of the Nature Relatedness Scale (NR-6) was used, with four statements from NR-Self (1-4) and two statements from NR-Experience (5 and 6):

    My connection to nature and the environment is a part of my spirituality. My relationship to nature is an important part of who I am. I feel very connected to all living things and the earth. I always think about how my actions affect the environment. My ideal vacation spot would be a remote, wilderness area. I take notice of wildlife wherever I am.

    Demographic questions included age group, educational level, and gender. The survey responses were in the form of a short answer (only identification of species), exclusionary checkboxes, or a 5-point Likert scale response (“Never” to “Very Often” or “Disagree Strongly” to “Agree Strongly”). Wildlife literacy and sentiment questions were accompanied by a corresponding species-specific color photo (Figure 2). Species sentiment was measured by species-specific exclusionary responses: 'I am happy they live at the park’, ‘I think they are important for the park ecosystem', 'I am concerned about their impact on human safety', 'I am concerned that they bring disease', 'I think they are a nuisance', or 'I am unsure how I feel or do not care’. We piloted the survey with a focus group before administering it in the six parks to identify possible issues such as unclear language or challenges in viewing on mobile devices and adjusted our final survey accordingly. All survey responses were anonymous.
    Analysis Initial exploratory analysis included a random effect for park type (community and conservation) and a random effect and interaction term for survey type (postcard and poster). The type of park was a significant factor, and the models afterwards were separated into two model sets, one for community park visitors and one for conservation park visitors. A random effect was included for the parks sampled (3 community parks or 3 conservation parks) within the corresponding model set. The type of survey was not a significant random effect, and the data of each type of survey were combined based on the type of park. No differences were found between the potential and actual respondents by postcard with respect to zip code, year of birth, and main reason for visitation. This suggests that nonresponse bias was unlikely.
    Mixed-effects linear models were applied using the ‘lme’ function in the 'nlme' package (v3. 1-152; Pinheiro et al., 2021) of the R software, version 4.2.1 (R Core Team, 2019). As our work forwards investigation on the specific factors associated with HNC (using the mean NR-6 score of a respondent) rather than the conventional application of NR-6 as a predictor of pro-environmental behavior or self-assessed well-being, we evaluated factors independently rather than collectively. Separate models were developed for community and conservation park survey data to evaluate HNC as a function of factors within four categories: (1) species literacy and positive species sentiment; (2) number, frequency, and type of outdoor recreation activities of childhood and adulthood; (3) main reason for visitation, prior visitation, length of visit, and distance of residence to the park; and (4) demographic factors (age category, educational level, and gender). Species literacy was calculated as the average of responses recorded in six

  14. u

    All Jobs Projections (City Area) - RTP 2023

    • data.wfrc.utah.gov
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). All Jobs Projections (City Area) - RTP 2023 [Dataset]. https://data.wfrc.utah.gov/datasets/80ec4c5b704748cf9ae43ed41a01909b
    Explore at:
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  15. f

    Associations between walkability and home values (outcome = log of median...

    • figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chelsea D. Christie; Christine M. Friedenreich; Jennifer E. Vena; Dany Doiron; Gavin R. McCormack (2023). Associations between walkability and home values (outcome = log of median neighbourhood home value). [Dataset]. http://doi.org/10.1371/journal.pone.0285397.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Chelsea D. Christie; Christine M. Friedenreich; Jennifer E. Vena; Dany Doiron; Gavin R. McCormack
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Associations between walkability and home values (outcome = log of median neighbourhood home value).

  16. w

    Industrial Jobs Projections (City Area) - RTP 2023

    • data.wfrc.org
    • data.wfrc.utah.gov
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Industrial Jobs Projections (City Area) - RTP 2023 [Dataset]. https://data.wfrc.org/datasets/566374a407264401bb8566e7dbd96841
    Explore at:
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  17. f

    Marginal effects estimates (slopes by city size and low or high proportion...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chelsea D. Christie; Christine M. Friedenreich; Jennifer E. Vena; Dany Doiron; Gavin R. McCormack (2023). Marginal effects estimates (slopes by city size and low or high proportion of detached homes; outcome = logarithm of median neighbourhood home value). [Dataset]. http://doi.org/10.1371/journal.pone.0285397.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Chelsea D. Christie; Christine M. Friedenreich; Jennifer E. Vena; Dany Doiron; Gavin R. McCormack
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Marginal effects estimates (slopes by city size and low or high proportion of detached homes; outcome = logarithm of median neighbourhood home value).

  18. i

    Demographic and Health Survey 2007 - Ukraine

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Statistical Committee of Ukraine (2019). Demographic and Health Survey 2007 - Ukraine [Dataset]. http://catalog.ihsn.org/catalog/2504
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    State Statistical Committee of Ukraine
    Ukrainian Center for Social Reforms
    Time period covered
    2007
    Area covered
    Ukraine
    Description

    Abstract

    The Ukraine Demographic and Health Survey (UDHS) is a nationally representative survey of 6,841 women age 15-49 and 3,178 men age 15-49. Survey fieldwork was conducted during the period July through November 2007. The UDHS was conducted by the Ukrainian Center for Social Reforms in close collaboration with the State Statistical Committee of Ukraine. The MEASURE DHS Project provided technical support for the survey. The U.S. Agency for International Development/Kyiv Regional Mission to Ukraine, Moldova, and Belarus provided funding.

    The survey is a nationally representative sample survey designed to provide information on population and health issues in Ukraine. The primary goal of the survey was to develop a single integrated set of demographic and health data for the population of the Ukraine.

    The UDHS was conducted from July to November 2007 by the Ukrainian Center for Social Reforms (UCSR) in close collaboration with the State Statistical Committee (SSC) of Ukraine, which provided organizational and methodological support. Macro International Inc. provided technical assistance for the survey through the MEASURE DHS project. USAID/Kyiv Regional Mission to Ukraine, Moldova and Belarus provided funding for the survey through the MEASURE DHS project. MEASURE DHS is sponsored by the United States Agency for International Development (USAID) to assist countries worldwide in obtaining information on key population and health indicators.

    The 2007 UDHS collected national- and regional-level data on fertility and contraceptive use, maternal health, adult health and life style, infant and child mortality, tuberculosis, and HIV/AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well.

    The results of the 2007 UDHS are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of Ukrainians and health services for the people of Ukraine. The 2007 UDHS also contributes to the growing international database on demographic and health-related variables.

    MAIN RESULTS

    • Fertility rates. A useful index of the level of fertility is the total fertility rate (TFR), which indicates the number of children a woman would have if she passed through the childbearing ages at the current age-specific fertility rates (ASFR). The TFR, estimated for the three-year period preceding the survey, is 1.2 children per woman. This is below replacement level.

    • Contraception : Knowledge and ever use. Knowledge of contraception is widespread in Ukraine. Among married women, knowledge of at least one method is universal (99 percent). On average, married women reported knowledge of seven methods of contraception. Eighty-nine percent of married women have used a method of contraception at some time.

    • Abortion rates. The use of abortion can be measured by the total abortion rate (TAR), which indicates the number of abortions a woman would have in her lifetime if she passed through her childbearing years at the current age-specific abortion rates. The UDHS estimate of the TAR indicates that a woman in Ukraine will have an average of 0.4 abortions during her lifetime. This rate is considerably lower than the comparable rate in the 1999 Ukraine Reproductive Health Survey (URHS) of 1.6. Despite this decline, among pregnancies ending in the three years preceding the survey, one in four pregnancies (25 percent) ended in an induced abortion.

    • Antenatal care. Ukraine has a well-developed health system with an extensive infrastructure of facilities that provide maternal care services. Overall, the levels of antenatal care and delivery assistance are high. Virtually all mothers receive antenatal care from professional health providers (doctors, nurses, and midwives) with negligible differences between urban and rural areas. Seventy-five percent of pregnant women have six or more antenatal care visits; 27 percent have 15 or more ANC visits. The percentage is slightly higher in rural areas than in urban areas (78 percent compared with 73 percent). However, a smaller proportion of rural women than urban women have 15 or more antenatal care visits (23 percent and 29 percent, respectively).

    • HIV/AIDS and other sexually transmitted infections : The currently low level of HIV infection in Ukraine provides a unique window of opportunity for early targeted interventions to prevent further spread of the disease. However, the increases in the cumulative incidence of HIV infection suggest that this window of opportunity is rapidly closing.

    • Adult Health : The major causes of death in Ukraine are similar to those in industrialized countries (cardiovascular diseases, cancer, and accidents), but there is also a rising incidence of certain infectious diseases, such as multidrug-resistant tuberculosis.

    • Women's status : Sixty-four percent of married women make decisions on their own about their own health care, 33 percent decide jointly with their husband/partner, and 1 percent say that their husband or someone else is the primary decisionmaker about the woman's own health care.

    • Domestic Violence : Overall, 17 percent of women age 15-49 experienced some type of physical violence between age 15 and the time of the survey. Nine percent of all women experienced at least one episode of violence in the 12 months preceding the survey. One percent of the women said they had often been subjected to violent physical acts during the past year. Overall, the data indicate that husbands are the main perpetrators of physical violence against women.

    • Human Trafficking : The UDHS collected information on respondents' awareness of human trafficking in Ukraine and, if applicable, knowledge about any household members who had been the victim of human trafficking during the three years preceding the survey. More than half (52 percent) of respondents to the household questionnaire reported that they had heard of a person experiencing this problem and 10 percent reported that they knew personally someone who had experienced human trafficking.

    Geographic coverage

    The survey is a nationally representative sample survey designed to provide information on population and health issues in Ukraine. The 27 administrative regions were grouped for this survey into five geographic regions: North, Central, East, South and West. The five geographic regions are the five study domains of the survey. The estimates obtained from the 2007 UDHS are presented for the country as a whole, for urban and rural areas, and for each of the five geographic regions.

    Analysis unit

    • Household
    • Women age 15-49
    • Men age 15-49

    Universe

    The population covered by the 2007 UDHS is defined as the universe of all women and men age 15-49 in Ukraine.

    Kind of data

    Sample survey data

    Sampling procedure

    The 2007 Ukraine Demographic and Health Survey (UDHS) was the first survey of its kind carried out in Ukraine. The survey was a nationally representative sample survey of 15,000 households, with an expected yield of about 7,900 completed interviews of women age 15-49. It was designed to provide estimates on fertility, infant and child mortality, use of contraception and family planning, knowledge and attitudes toward HIV/AIDS and other sexually transmitted infections (STI), and other family welfare and health indicators. Ukraine is made up of 24 oblasts, the Autonomous Republic of Crimea, and two special cities (Kyiv and Sevastopol), which together make up 27 administrative regions, each subdivided into lower-level administrative units. The 27 administrative regions were grouped for this survey into five geographic regions: North, Central, East, South and West. The five geographic regions are the five study domains of the survey. The estimates obtained from the 2007 UDHS are presented for the country as a whole, for urban and rural areas, and for each of the five geographic regions.

    A men's survey was conducted at the same time as the women's survey, in a subsample consisting of one household in every two selected for the female survey. All men age 15-49 living in the selected households were eligible for the men's survey. The survey collected information on men's use of contraception and family planning and their knowledge and attitudes toward HIV/AIDS and other sexually transmitted infections (STI).

    SAMPLING FRAME

    The sampling frame used for the 2007 UDHS was the Ukraine Population Census conducted in 2001 (SSC, 2003a), provided by the State Statistical Committee (SSC) of Ukraine. The sampling frame consisted of about 38 thousand enumeration areas (EAs) with an average of 400-500 households per EA. Each EA is subdivided into 4-5 enumeration units (EUs) with an average of 100 households per EU. An EA is a city block in urban areas; in rural areas, an EA is either a village or part of a large village, or a group of small villages (possibly plus a part of a large village). An EU is a list of addresses (in a neighborhood) that was used as a convenient counting unit for the census. Both EAs and EUs include information about the location, type of residence, address of each structure in it, and the number of households in each structure.

    Census maps were available for most of the EAs with marked boundaries. In urban areas, the census maps have marked boundaries/locations of the EUs. In rural areas, the EUs are defined by detailed descriptions available at the SSC local office. Therefore, either the EA or the EU could be used as the primary sampling unit (PSU) for the 2007 UDHS. Because the EAs in urban areas are large (an average of 500 households), using

  19. a

    NonTypical Jobs Projections (TAZ) - RTP 2019

    • data-wfrc.opendata.arcgis.com
    • data.wfrc.utah.gov
    • +1more
    Updated Jun 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2020). NonTypical Jobs Projections (TAZ) - RTP 2019 [Dataset]. https://data-wfrc.opendata.arcgis.com/datasets/nontypical-jobs-projections-taz-rtp-2019
    Explore at:
    Dataset updated
    Jun 12, 2020
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019:This dataset now includes projections for all populated statewide traffic analysis zones (TAZs).Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below.Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org.Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services;Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  20. Potential Access to Parks (Southeast Blueprint Indicator)

    • gis-fws.opendata.arcgis.com
    • hub.arcgis.com
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2023). Potential Access to Parks (Southeast Blueprint Indicator) [Dataset]. https://gis-fws.opendata.arcgis.com/maps/0f44447ccc2b4968ae61e239bbfbeeda
    Explore at:
    Dataset updated
    Sep 25, 2023
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Authors
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Reason for Selection Protected natural areas help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). However, parks are not equitably distributed within easy walking distance for everyone. It also complements the urban park size indicator by capturing the value of potential new parks. Input Data

      The Trust for Public Land (TPL) ParkServe database, accessed 8-8-2021: Park priority areas (ParkServe_ParkPriorityAreas_08062021) 
        From the TPL ParkServe documentation:
    

    The ParkServe database maintains an inventory of parks for every urban area in the U.S., including Puerto Rico. This includes all incorporated and Census-designated places that lie within any of the country’s 3,000+ census-designated urban areas. All populated areas in a city that fall outside of a 10-minute walk service area are assigned a level of park priority, based on a comprehensive index of six equally weighted demographic and environmental metrics:Population densityDensity of low-income households – which are defined as households with income less than 75 percent of the urban area median household incomeDensity of people of colorCommunity health – a combined index based on the rate of poor mental health and low physical activity from the 2020 CDC PLACES census tract datasetUrban heat islands – surface temperature at least 1.25o greater than city mean surface temperature from The Trust for Public Land, based on Landsat 8 satellite imageryPollution burden - Air toxics respiratory hazard index from 2020 EPA EJScreen The 10-minute walkFor each park, we create a 10-minute walkable service area using a nationwide walkable road network dataset provided by Esri. The analysis identifies physical barriers such as highways, train tracks, and rivers without bridges and chooses routes without barriers.

      CDC Social Vulnerability Index 2018: RPL_Themes 
    

    Social vulnerability refers to the capacity for a person or group to “anticipate, cope with, resist and recover from the impact” of a natural or anthropogenic disaster such as extreme weather events, oil spills, earthquakes, and fires. Socially vulnerable populations are more likely to be disproportionately affected by emergencies (Wolkin et al. 2018).

    In this indicator, we use the “RPL_THEMES” attribute from the Social Vulnerability Index, described here. “The Geospatial Research, Analysis, and Services Program (GRASP) at Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry developed the Social Vulnerability Index (SVI). The SVI is a dataset intended to help state, local, and tribal disaster management officials identify where the most socially vulnerable populations occur (Agency for Toxic Substances and Disease Registry [ATSDR] 2018)” (Flanagan et al. 2018).

    “The SVI database is regularly updated and includes 15 census variables (ATSDR 2018). Each census variable was ranked from highest to lowest vulnerability across all census tracts in the nation with a nonzero population. A percentile rank was calculated for each census tract for each variable. The variables were then grouped among four themes.... A tract-level percentile rank was also calculated for each of the four themes. Finally, an overall percentile rank for each tract as the sum of all variable rankings was calculated. This process of percentile ranking was then repeated for the individual states” (Flanagan et al. 2018).

    Base Blueprint 2022 extent
    Southeast Blueprint 2023 extent
    

    Mapping Steps

    Convert the ParkServe park priority areas layer to a raster using the ParkRank field. Note: The ParkRank scores are calculated using metrics classified relative to each city. Each city contains park rank values that range from 1-3. For the purposes of this indicator, we chose to target potential park areas to improve equity. Because the ParkRank scores are relative for each city, a high score in one city is not necessarily comparable to a high score from another city. In an effort to try to bring more equity into this indicator, we also use the CDC Social Vulnerability Index to narrow down the results.
    Reclassify the ParkServe raster to make NoData values 0. 
    Convert the SVI layer from vector to raster based on the “RPL_Themes” field. 
    To limit the ParkRank layer to areas with high SVI scores, first identify census tracts with an “RPL_Themes” field value >0.65. Make a new raster that assigns a value of 1 to census tracts that score >0.65, and a value of 0 to everything else. Take the resulting raster times the ParkRank layer.
    Reclassify this raster into the 4 classes seen in the final indicator below.
    Clip to the spatial extent of Base Blueprint 2022.
    As a final step, clip to the spatial extent of Southeast Blueprint 2023. 
    

    Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator values Indicator values are assigned as follows: 3 = Very high priority for a new park that would create nearby equitable access

    2 = High priority for a new park that would create nearby equitable access1 = Moderate priority for a new park that would create nearby equitable access 0 = Not identified as a priority for a new park that would create nearby equitable access (within urban areas) Known Issues

    This indicator could overestimate park need in areas where existing parks are missing from the ParkServe database. TPL regularly updates ParkServe to incorporate the best available park data. If you notice missing parks or errors in the park boundaries or attributes, you can submit corrections through the ParkReviewer tool or by contacting TPL staff.
    Within a given area of high park need, the number of people served by the creation of a new park depends on its size and how centrally located it is. This indicator does not account for this variability. Similarly, while creating a new park just outside an area of high park need would create access for some people on the edge, the indicator does not capture the benefits of new parks immediately adjacent to high-need areas. For a more granular analysis of new park benefits, ParkServe’s ParkEvaluator tool allows you to draw a new park, view its resulting 10-minute walk service area, and calculate who would benefit.
    Beyond considering distance to a park and whether it is open to the public, this indicator does not account for other factors that might limit park access, such as park amenities or public safety. The TPL analysis excludes private or exclusive parks that restrict access to only certain individuals (e.g., parks in gated communities, fee-based sites). The TPL data includes a wide variety of parks, trails, and open space as long as there is no barrier to entry for any portion of the population.
    The indicator does not incorporate inequities in access to larger versus smaller parks. In predicting where new parks would benefit nearby people who currently lack access, this indicator treats all existing parks equally.
    This indicator identifies areas where parks are needed, but does not consider whether a site is available to become a park. We included areas of low intensity development in order to capture vacant lots, which can serve as new park opportunities. However, as a result, this indicator also captures some areas that are already used for another purpose (e.g., houses, cemeteries, and businesses) and are unlikely to become parks. In future updates, we would like to use spatial data depicting vacant lots to identify more feasible park opportunities.
    This indicator underestimates places in rural areas where many people within a socially vulnerable census tract would benefit from a new park. ParkServe covers incorporated and Census-designated places within census-designated urban areas, which leaves out many rural areas. We acknowledge that there are still highly socially vulnerable communities in rural areas that would benefit from the development of new parks. However, based on the source data, we were not able to capture those places in this version of the indicator. 
    

    Other Things to Keep in MindThe zero values in this indicator contain three distinct types of areas that we were unable to distinguish between in the legend: 1) Areas that are not in a community analyzed by ParkServe (ParkServe covers incorporated and Census-designated places within census-designated urban areas); 2) Areas in a community analyzed by ParkServe that were not identified as a priority; 3) Areas that ParkServe identifies as a priority but do not meet the SVI threshold used to represent areas in most need of improved equitable access.This indicator only includes park priority areas that fall within the 65th percentile or above from the Social Vulnerability Index. We did not perform outreach to community leaders or community-led organizations for feedback on this threshold. This indicator is intended to generally help identify potential parks that can increase equitable access but should not be solely used to inform the creation of new parks. As the social equity component relies on information summarized by census tract, it should only be used in conjunction with local knowledge and in discussion with local communities (NRPA 2021, Manuel-Navarete et al. 2004). Disclaimer: Comparing with Older Indicator Versions There are numerous problems with using Southeast Blueprint indicators for change analysis. Please consult Blueprint staff if you would like to do this (email hilary_morris@fws.gov). Literature Cited Centers for

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Wasatch Front Regional Council (2024). Population Projections (City Area) - RTP 2023 [Dataset]. https://data.wfrc.utah.gov/items/b3b4e6cf89ce469cbbb78fa7fabc311c

Population Projections (City Area) - RTP 2023

Explore at:
Dataset updated
May 17, 2024
Dataset authored and provided by
Wasatch Front Regional Council
Description

Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

Wasatch Front Real Estate Market Model (REMM) Projections

WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

Demographic data from the decennial census
County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
Current employment locational patterns derived from the Utah Department of Workforce Services
Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
Current land use and valuation GIS-based parcel data stewarded by County Assessors
Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level

‘Traffic Analysis Zone’ Projections

The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

‘City Area’ Projections

The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

Summary Variables in the Datasets

Annual projection counts are available for the following variables (please read Key Exclusions note below):

Demographics

Household Population Count (excludes persons living in group quarters) 
Household Count (excludes group quarters) 

Employment

Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
Retail Job Count (retail, food service, hotels, etc)
Office Job Count (office, health care, government, education, etc)
Industrial Job Count (manufacturing, wholesale, transport, etc)
Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
  • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

Key Exclusions from TAZ and ‘City Area’ Projections

As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

Statewide Projections

Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

Search
Clear search
Close search
Google apps
Main menu