https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts
Retrospectively collected medical data has the opportunity to improve patient care through knowledge discovery and algorithm development. Broad reuse of medical data is desirable for the greatest public good, but data sharing must be done in a manner which protects patient privacy. Here we present Medical Information Mart for Intensive Care (MIMIC)-IV, a large deidentified dataset of patients admitted to the emergency department or an intensive care unit at the Beth Israel Deaconess Medical Center in Boston, MA. MIMIC-IV contains data for over 65,000 patients admitted to an ICU and over 200,000 patients admitted to the emergency department. MIMIC-IV incorporates contemporary data and adopts a modular approach to data organization, highlighting data provenance and facilitating both individual and combined use of disparate data sources. MIMIC-IV is intended to carry on the success of MIMIC-III and support a broad set of applications within healthcare.
Retrospectively collected medical data has the opportunity to improve patient care through knowledge discovery and algorithm development. Broad reuse of medical data is desirable for the greatest public good, but data sharing must be done in a manner which protects patient privacy.
The Medical Information Mart for Intensive Care (MIMIC)-III database provided critical care data for over 40,000 patients admitted to intensive care units at the Beth Israel Deaconess Medical Center (BIDMC). Importantly, MIMIC-III was deidentified, and patient identifiers were removed according to the Health Insurance Portability and Accountability Act (HIPAA) Safe Harbor provision. MIMIC-III has been integral in driving large amounts of research in clinical informatics, epidemiology, and machine learning. Here we present MIMIC-IV, an update to MIMIC-III, which incorporates contemporary data and improves on numerous aspects of MIMIC-III. MIMIC-IV adopts a modular approach to data organization, highlighting data provenance and facilitating both individual and combined use of disparate data sources. MIMIC-IV is intended to carry on the success of MIMIC-III and support a broad set of applications within healthcare.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The Medical Information Mart for Intensive Care (MIMIC)-IV database is comprised of deidentified electronic health records for patients admitted to the Beth Israel Deaconess Medical Center. Access to MIMIC-IV is limited to credentialed users. Here, we have provided an openly-available demo of MIMIC-IV containing a subset of 100 patients. The dataset includes similar content to MIMIC-IV, but excludes free-text clinical notes. The demo may be useful for running workshops and for assessing whether the MIMIC-IV is appropriate for a study before making an access request.
MIMIC-IV ICD-10 contains 122,279 discharge summaries—free-text medical documents—annotated with ICD-10 diagnosis and procedure codes. It contains data for patients admitted to the Beth Israel Deaconess Medical Center emergency department or ICU between 2008-2019. All codes with fewer than ten examples have been removed, and the train-val-test split was created using multi-label stratified sampling. The dataset is described further in Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review and Replicability Study, and the code to use the dataset is found here.
The dataset is intended for medical code prediction and was created using MIMIC-IV v2.2 and MIMIC-IV-NOTE v2.2. Using the two datasets requires a license obtained in Physionet; this can take a couple of days.
https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts
MIMIC-III is a large, freely-available database comprising deidentified health-related data associated with over forty thousand patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. The database includes information such as demographics, vital sign measurements made at the bedside (~1 data point per hour), laboratory test results, procedures, medications, caregiver notes, imaging reports, and mortality (including post-hospital discharge).MIMIC supports a diverse range of analytic studies spanning epidemiology, clinical decision-rule improvement, and electronic tool development. It is notable for three factors: it is freely available to researchers worldwide; it encompasses a diverse and very large population of ICU patients; and it contains highly granular data, including vital signs, laboratory results, and medications.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
MIMIC-III is a large, freely-available database comprising deidentified health-related data associated with over 40,000 patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012 [1]. The MIMIC-III Clinical Database is available on PhysioNet (doi: 10.13026/C2XW26). Though deidentified, MIMIC-III contains detailed information regarding the care of real patients, and as such requires credentialing before access. To allow researchers to ascertain whether the database is suitable for their work, we have manually curated a demo subset, which contains information for 100 patients also present in the MIMIC-III Clinical Database. Notably, the demo dataset does not include free-text notes.
https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts
The advent of large, open access text databases has driven advances in state-of-the-art model performance in natural language processing (NLP). The relatively limited amount of clinical data available for NLP has been cited as a significant barrier to the field's progress. Here we describe MIMIC-IV-Note: a collection of deidentified free-text clinical notes for patients included in the MIMIC-IV clinical database. MIMIC-IV-Note contains 357,289 deidentified discharge summaries from 161,403 patients admitted to the hospital and emergency department at the Beth Israel Deaconess Medical Center in Boston, MA, USA. The database also contains 2,471,881 deidentified radiology reports for 256,400 patients. All notes have had protected health information removed in accordance with the Health Insurance Portability and Accountability Act (HIPAA) Safe Harbor provision. All notes are linkable to MIMIC-IV providing important context to the clinical data therein. The database is intended to stimulate research in clinical natural language processing and associated areas.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The MIMIC-IV-ECG module contains approximately 800,000 diagnostic electrocardiograms across nearly 160,000 unique patients. These diagnostic ECGs use 12 leads and are 10 seconds in length. They are sampled at 500 Hz. This subset contains all of the ECGs for patients who appear in the MIMIC-IV Clinical Database. When a cardiologist report is available for a given ECG, we provide the needed information to link the waveform to the report. The patients in MIMIC-IV-ECG have been matched against the MIMIC-IV Clinical Database, making it possible to link to information across the MIMIC-IV modules.
The Medical Information Mart for Intensive Care III (MIMIC-III) dataset is a large, de-identified and publicly-available collection of medical records. Each record in the dataset includes ICD-9 codes, which identify diagnoses and procedures performed. Each code is partitioned into sub-codes, which often include specific circumstantial details. The dataset consists of 112,000 clinical reports records (average length 709.3 tokens) and 1,159 top-level ICD-9 codes. Each report is assigned to 7.6 codes, on average. Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more.
The database supports applications including academic and industrial research, quality improvement initiatives, and higher education coursework.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts
Retrospectively collected medical data has the opportunity to improve patient care through knowledge discovery and algorithm development. Broad reuse of medical data is desirable for the greatest public good, but data sharing must be done in a manner which protects patient privacy. Here we present Medical Information Mart for Intensive Care (MIMIC)-IV, a large deidentified dataset of patients admitted to the emergency department or an intensive care unit at the Beth Israel Deaconess Medical Center in Boston, MA. MIMIC-IV contains data for over 65,000 patients admitted to an ICU and over 200,000 patients admitted to the emergency department. MIMIC-IV incorporates contemporary data and adopts a modular approach to data organization, highlighting data provenance and facilitating both individual and combined use of disparate data sources. MIMIC-IV is intended to carry on the success of MIMIC-III and support a broad set of applications within healthcare.