6 datasets found
  1. d

    Graphical representations of data from sediment cores collected in 2009...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Graphical representations of data from sediment cores collected in 2009 offshore from Palos Verdes, California [Dataset]. https://catalog.data.gov/dataset/graphical-representations-of-data-from-sediment-cores-collected-in-2009-offshore-from-palo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Rancho Palos Verdes, California, Palos Verdes Peninsula
    Description

    This part of the data release includes graphical representation (figures) of data from sediment cores collected in 2009 offshore of Palos Verdes, California. This file graphically presents combined data for each core (one core per page). Data on each figure are continuous core photograph, CT scan (where available), graphic diagram core description (graphic legend included at right; visual grain size scale of clay, silt, very fine sand [vf], fine sand [f], medium sand [med], coarse sand [c], and very coarse sand [vc]), multi-sensor core logger (MSCL) p-wave velocity (meters per second) and gamma-ray density (grams per cc), radiocarbon age (calibrated years before present) with analytical error (years), and pie charts that present grain-size data as percent sand (white), silt (light gray), and clay (dark gray). This is one of seven files included in this U.S. Geological Survey data release that include data from a set of sediment cores acquired from the continental slope, offshore Los Angeles and the Palos Verdes Peninsula, adjacent to the Palos Verdes Fault. Gravity cores were collected by the USGS in 2009 (cruise ID S-I2-09-SC; http://cmgds.marine.usgs.gov/fan_info.php?fan=SI209SC), and vibracores were collected with the Monterey Bay Aquarium Research Institute's remotely operated vehicle (ROV) Doc Ricketts in 2010 (cruise ID W-1-10-SC; http://cmgds.marine.usgs.gov/fan_info.php?fan=W110SC). One spreadsheet (PalosVerdesCores_Info.xlsx) contains core name, location, and length. One spreadsheet (PalosVerdesCores_MSCLdata.xlsx) contains Multi-Sensor Core Logger P-wave velocity, gamma-ray density, and magnetic susceptibility whole-core logs. One zipped folder of .bmp files (PalosVerdesCores_Photos.zip) contains continuous core photographs of the archive half of each core. One spreadsheet (PalosVerdesCores_GrainSize.xlsx) contains laser particle grain size sample information and analytical results. One spreadsheet (PalosVerdesCores_Radiocarbon.xlsx) contains radiocarbon sample information, results, and calibrated ages. One zipped folder of DICOM files (PalosVerdesCores_CT.zip) contains raw computed tomography (CT) image files. One .pdf file (PalosVerdesCores_Figures.pdf) contains combined displays of data for each core, including graphic diagram descriptive logs. This particular metadata file describes the information contained in the file PalosVerdesCores_Figures.pdf. All cores are archived by the U.S. Geological Survey Pacific Coastal and Marine Science Center.

  2. a

    Watershed Boundaries (HUC 8)

    • hub.arcgis.com
    • gis-fws.opendata.arcgis.com
    Updated Jul 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2022). Watershed Boundaries (HUC 8) [Dataset]. https://hub.arcgis.com/maps/fws::watershed-boundaries-huc-8/about
    Explore at:
    Dataset updated
    Jul 28, 2022
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    The "Watershed" feature layer is a component of the "Pollinator Restoration 2022" map which is itself a component of the "USFWS Pollinator Restoration Projects Mapper" which is a dashboard showing management projects that benefit pollinators across the Western U.S. See below for a description of the "USFWS Pollinator Restoration Projects Mapper."The "USFWS Pollinator Restoration Projects Mapper" is under development by the Region 1 (Pacific Northwest) USFWS Science Applications program. Completion is anticipated by Winter 2023. Contact: Alan Yanahan (alan_yanahan@fws.gov).The purpose of the "USFWS Pollinator Restoration Projects Mapper" is to inform future pollinator conservation efforts by providing a way to identify geographic areas where additional pollinator conservation may be needed.The "USFWS Pollinator Restoration Projects Mapper" maps the locations of where on-the-ground projects that are beneficial to pollinators have taken place. Its primary focus is projects on public lands. The majority of records included in this tool come from internal databases for the USFWS, US Forest Service, and the Bureau of Land Management, which were queried for relevant projects. The tool is not intended as a database for reporting projects to. Rather, the tool synthesizes records from existing databases.The geographic scope of the tool includes the western states of Arizona, California, Idaho, Nevada, Oregon, Utah, and Washington.When possible, the tool includes projects from 2014 to the present. This timespan was chosen because it matches the timespan of the USFWS Monarch Conservation Database For consistency, the tool groups pollinator beneficial projects into the following four activity types:Restoration: Actions taken after a disturbance, such as planting native forbs after a wildfireMaintenance: Actions taken outside the growing season that maintain habitat quality through regular disturbance using manual or chemical means. Examples: mowing, spraying weeds, prescribed fireConservation: Acquiring land or creating easements that are managed for biodiversityEnhancement: Actions that increase forb diversity and nectar resources, such as planting native milkweedThe tool includes a map that aggregates project point locations within 49 square mile sized hexagon grid cells. Users can click on individual grid cells to activate a pop-up menu to cycle through the projects that occurred within that grid cell. Information for each project include, but are not limited to, acreage, type of activity (i.e., restoration, maintenance, conservation, enhancement), data source, and lead organization.The tool also includes a dashboard to view bar graphs and pie charts that display project acreages and project number based on location (i.e., state), project activity type (i.e., restoration, maintenance, conservation, enhancement), data source, and management type. Data can be filtered by data source, activity type, and year. Data filtering will update the map, bar graphs, and pie charts.

  3. a

    CountiesStatesInfo

    • hub.arcgis.com
    • gis-fws.opendata.arcgis.com
    Updated Jul 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2022). CountiesStatesInfo [Dataset]. https://hub.arcgis.com/datasets/c581225347504c03b518a0ae94578212
    Explore at:
    Dataset updated
    Jul 28, 2022
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    The "CountiesStatesInfo" feature layer is a component of the "Pollinator Restoration 2022" map which is itself a component of the "USFWS Pollinator Restoration Projects Mapper" which is a dashboard showing management projects that benefit pollinators across the Western U.S. See below for a description of the "USFWS Pollinator Restoration Projects Mapper."The "USFWS Pollinator Restoration Projects Mapper" is under development by the Region 1 (Pacific Northwest) USFWS Science Applications program. Completion is anticipated by Winter 2023. Contact: Alan Yanahan (alan_yanahan@fws.gov).The purpose of the "USFWS Pollinator Restoration Projects Mapper" is to inform future pollinator conservation efforts by providing a way to identify geographic areas where additional pollinator conservation may be needed.The "USFWS Pollinator Restoration Projects Mapper" maps the locations of where on-the-ground projects that are beneficial to pollinators have taken place. Its primary focus is projects on public lands. The majority of records included in this tool come from internal databases for the USFWS, US Forest Service, and the Bureau of Land Management, which were queried for relevant projects. The tool is not intended as a database for reporting projects to. Rather, the tool synthesizes records from existing databases.The geographic scope of the tool includes the western states of Arizona, California, Idaho, Nevada, Oregon, Utah, and Washington.When possible, the tool includes projects from 2014 to the present. This timespan was chosen because it matches the timespan of the USFWS Monarch Conservation Database For consistency, the tool groups pollinator beneficial projects into the following four activity types:Restoration: Actions taken after a disturbance, such as planting native forbs after a wildfireMaintenance: Actions taken outside the growing season that maintain habitat quality through regular disturbance using manual or chemical means. Examples: mowing, spraying weeds, prescribed fireConservation: Acquiring land or creating easements that are managed for biodiversityEnhancement: Actions that increase forb diversity and nectar resources, such as planting native milkweedThe tool includes a map that aggregates project point locations within 49 square mile sized hexagon grid cells. Users can click on individual grid cells to activate a pop-up menu to cycle through the projects that occurred within that grid cell. Information for each project include, but are not limited to, acreage, type of activity (i.e., restoration, maintenance, conservation, enhancement), data source, and lead organization.The tool also includes a dashboard to view bar graphs and pie charts that display project acreages and project number based on location (i.e., state), project activity type (i.e., restoration, maintenance, conservation, enhancement), data source, and management type. Data can be filtered by data source, activity type, and year. Data filtering will update the map, bar graphs, and pie charts.

  4. f

    Real time PCR testing platforms being used for SARS CoV2 detection by...

    • figshare.com
    xls
    Updated Jan 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erick Jacob Okek; Fredrick Joshua Masembe; Jocelyn Kiconco; John Kayiwa; Esther Amwine; Daniel Obote; Stephen Alele; Charles Nahabwe; Jackson Were; Bernard Bagaya; Stephen Balinandi; Julius Lutwama; Pontiano Kaleebu (2024). Real time PCR testing platforms being used for SARS CoV2 detection by various Ugandan laboratories. [Dataset]. http://doi.org/10.1371/journal.pone.0287272.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 24, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Erick Jacob Okek; Fredrick Joshua Masembe; Jocelyn Kiconco; John Kayiwa; Esther Amwine; Daniel Obote; Stephen Alele; Charles Nahabwe; Jackson Were; Bernard Bagaya; Stephen Balinandi; Julius Lutwama; Pontiano Kaleebu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Uganda
    Description

    Real time PCR testing platforms being used for SARS CoV2 detection by various Ugandan laboratories.

  5. Comparison of CT values of samples with discrepant results between the UVRI...

    • plos.figshare.com
    xls
    Updated Jan 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erick Jacob Okek; Fredrick Joshua Masembe; Jocelyn Kiconco; John Kayiwa; Esther Amwine; Daniel Obote; Stephen Alele; Charles Nahabwe; Jackson Were; Bernard Bagaya; Stephen Balinandi; Julius Lutwama; Pontiano Kaleebu (2024). Comparison of CT values of samples with discrepant results between the UVRI COVID19 National Reference Laboratory and the primary testing laboratories. [Dataset]. http://doi.org/10.1371/journal.pone.0287272.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 24, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Erick Jacob Okek; Fredrick Joshua Masembe; Jocelyn Kiconco; John Kayiwa; Esther Amwine; Daniel Obote; Stephen Alele; Charles Nahabwe; Jackson Were; Bernard Bagaya; Stephen Balinandi; Julius Lutwama; Pontiano Kaleebu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of CT values of samples with discrepant results between the UVRI COVID19 National Reference Laboratory and the primary testing laboratories.

  6. a

    Data from: Restoration Projects

    • hub.arcgis.com
    • gis-fws.opendata.arcgis.com
    Updated Aug 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2022). Restoration Projects [Dataset]. https://hub.arcgis.com/maps/fws::restoration-projects
    Explore at:
    Dataset updated
    Aug 4, 2022
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    The "Restoration Projects" feature layer is a component of the "Pollinator Restoration 2022" map which is itself a component of the "USFWS Pollinator Restoration Projects Mapper" which is a dashboard showing management projects that benefit pollinators across the Western U.S. See below for a description of the "USFWS Pollinator Restoration Projects Mapper."The "USFWS Pollinator Restoration Projects Mapper" is under development by the Region 1 (Pacific Northwest) USFWS Science Applications program. Completion is anticipated by Winter 2023. Contact: Alan Yanahan (alan_yanahan@fws.gov).The purpose of the "USFWS Pollinator Restoration Projects Mapper" is to inform future pollinator conservation efforts by providing a way to identify geographic areas where additional pollinator conservation may be needed.The "USFWS Pollinator Restoration Projects Mapper" maps the locations of where on-the-ground projects that are beneficial to pollinators have taken place. Its primary focus is projects on public lands. The majority of records included in this tool come from internal databases for the USFWS, US Forest Service, and the Bureau of Land Management, which were queried for relevant projects. The tool is not intended as a database for reporting projects to. Rather, the tool synthesizes records from existing databases.The geographic scope of the tool includes the western states of Arizona, California, Idaho, Nevada, Oregon, Utah, and Washington.When possible, the tool includes projects from 2014 to the present. This timespan was chosen because it matches the timespan of the USFWS Monarch Conservation Database For consistency, the tool groups pollinator beneficial projects into the following four activity types:Restoration: Actions taken after a disturbance, such as planting native forbs after a wildfireMaintenance: Actions taken outside the growing season that maintain habitat quality through regular disturbance using manual or chemical means. Examples: mowing, spraying weeds, prescribed fireConservation: Acquiring land or creating easements that are managed for biodiversityEnhancement: Actions that increase forb diversity and nectar resources, such as planting native milkweedThe tool includes a map that aggregates project point locations within 49 square mile sized hexagon grid cells. Users can click on individual grid cells to activate a pop-up menu to cycle through the projects that occurred within that grid cell. Information for each project include, but are not limited to, acreage, type of activity (i.e., restoration, maintenance, conservation, enhancement), data source, and lead organization.The tool also includes a dashboard to view bar graphs and pie charts that display project acreages and project number based on location (i.e., state), project activity type (i.e., restoration, maintenance, conservation, enhancement), data source, and management type. Data can be filtered by data source, activity type, and year. Data filtering will update the map, bar graphs, and pie charts.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Graphical representations of data from sediment cores collected in 2009 offshore from Palos Verdes, California [Dataset]. https://catalog.data.gov/dataset/graphical-representations-of-data-from-sediment-cores-collected-in-2009-offshore-from-palo

Graphical representations of data from sediment cores collected in 2009 offshore from Palos Verdes, California

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
Rancho Palos Verdes, California, Palos Verdes Peninsula
Description

This part of the data release includes graphical representation (figures) of data from sediment cores collected in 2009 offshore of Palos Verdes, California. This file graphically presents combined data for each core (one core per page). Data on each figure are continuous core photograph, CT scan (where available), graphic diagram core description (graphic legend included at right; visual grain size scale of clay, silt, very fine sand [vf], fine sand [f], medium sand [med], coarse sand [c], and very coarse sand [vc]), multi-sensor core logger (MSCL) p-wave velocity (meters per second) and gamma-ray density (grams per cc), radiocarbon age (calibrated years before present) with analytical error (years), and pie charts that present grain-size data as percent sand (white), silt (light gray), and clay (dark gray). This is one of seven files included in this U.S. Geological Survey data release that include data from a set of sediment cores acquired from the continental slope, offshore Los Angeles and the Palos Verdes Peninsula, adjacent to the Palos Verdes Fault. Gravity cores were collected by the USGS in 2009 (cruise ID S-I2-09-SC; http://cmgds.marine.usgs.gov/fan_info.php?fan=SI209SC), and vibracores were collected with the Monterey Bay Aquarium Research Institute's remotely operated vehicle (ROV) Doc Ricketts in 2010 (cruise ID W-1-10-SC; http://cmgds.marine.usgs.gov/fan_info.php?fan=W110SC). One spreadsheet (PalosVerdesCores_Info.xlsx) contains core name, location, and length. One spreadsheet (PalosVerdesCores_MSCLdata.xlsx) contains Multi-Sensor Core Logger P-wave velocity, gamma-ray density, and magnetic susceptibility whole-core logs. One zipped folder of .bmp files (PalosVerdesCores_Photos.zip) contains continuous core photographs of the archive half of each core. One spreadsheet (PalosVerdesCores_GrainSize.xlsx) contains laser particle grain size sample information and analytical results. One spreadsheet (PalosVerdesCores_Radiocarbon.xlsx) contains radiocarbon sample information, results, and calibrated ages. One zipped folder of DICOM files (PalosVerdesCores_CT.zip) contains raw computed tomography (CT) image files. One .pdf file (PalosVerdesCores_Figures.pdf) contains combined displays of data for each core, including graphic diagram descriptive logs. This particular metadata file describes the information contained in the file PalosVerdesCores_Figures.pdf. All cores are archived by the U.S. Geological Survey Pacific Coastal and Marine Science Center.

Search
Clear search
Close search
Google apps
Main menu