48 datasets found
  1. c

    Pima Indians Diabetes Dataset

    • cubig.ai
    zip
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Pima Indians Diabetes Dataset [Dataset]. https://cubig.ai/store/products/488/pima-indians-diabetes-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 22, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Pima Indians Diabetes Dataset is a tabular medical dataset for predicting diabetes (0: non-diabetic, 1: diabetic) based on health examination data of Pima Indian women in the United States.

    2) Data Utilization (1) Pima Indians Diabetes Dataset has characteristics that: • Each row contains eight health indicators, including the number of pregnancies, blood sugar, diastolic blood pressure, arm triceps skin thickness, two-hour blood insulin, BMI, family history-based diabetes risk, and age, as well as binary outcomes (with or without diabetes). • The data is constructed without personal identification information and is widely used in medical diagnosis support and in the practice of various binary classification algorithms. (2) Pima Indians Diabetes Dataset can be used to: • Developing Diabetes Prediction Models: Using health indicator data, we can build a variety of machine learning-based diabetes prediction models such as logistic regression, decision tree, and neural networks. • Medical Data Interpretation and Variable Importance Analysis: It can be used in research to analyze the diabetes prediction contribution and clinical significance of each health variable by applying interpretation techniques such as SHAP.

  2. H

    Replication Data for: Pima Indians Diabetes

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Apr 6, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Bartley (2016). Replication Data for: Pima Indians Diabetes [Dataset]. http://doi.org/10.7910/DVN/XFOZQR
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 6, 2016
    Dataset provided by
    Harvard Dataverse
    Authors
    Christopher Bartley
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Original data from: https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes Changes made: - Rows with missing values ('0' values) for BP column, triceps, insulin and BMI were removed. Number of rows reduced from 768 (original) to 394. Atrributes 0. Class variable (-1=normal or +1=diabetes) 1. Number of times pregnant 2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test 3. Diastolic blood pressure (mm Hg) 4. Triceps skin fold thickness (mm) 5. 2-Hour serum insulin (mu U/ml) 6. Body mass index (weight in kg/(height in m)^2) 7. Diabetes pedigree function 8. Age (years)

  3. Pima Indians Diabetes Dataset

    • kaggle.com
    zip
    Updated Nov 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ipey Pazzesco (2020). Pima Indians Diabetes Dataset [Dataset]. https://www.kaggle.com/datasets/ipeypazzesco99/pima-indians-diabetes-dataset
    Explore at:
    zip(9001 bytes)Available download formats
    Dataset updated
    Nov 13, 2020
    Authors
    Ipey Pazzesco
    Description

    Pima Indians Diabetes Dataset

    Sources:

    https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv

    (a) Original owners: National Institute of Diabetes and Digestive and Kidney Diseases (b) Donor of database: Vincent Sigillito (vgs@aplcen.apl.jhu.edu) Research Center, RMI Group Leader Applied Physics Laboratory The Johns Hopkins University Johns Hopkins Road Laurel, MD 20707 (301) 953-6231 (c) Date received: 9 May 1990

    Past Usage:

    1. Smith,~J.~W., Everhart,~J.~E., Dickson,~W.~C., Knowler,~W.~C., \&
      Johannes,~R.~S. (1988). Using the ADAP learning algorithm to forecast
      the onset of diabetes mellitus. In {\it Proceedings of the Symposium
      on Computer Applications and Medical Care} (pp. 261--265). IEEE
      Computer Society Press.
    
      The diagnostic, binary-valued variable investigated is whether the
      patient shows signs of diabetes according to World Health Organization
      criteria (i.e., if the 2 hour post-load plasma glucose was at least 
      200 mg/dl at any survey examination or if found during routine medical
      care).  The population lives near Phoenix, Arizona, USA.
    
      Results: Their ADAP algorithm makes a real-valued prediction between
      0 and 1. This was transformed into a binary decision using a cutoff of 
      0.448. Using 576 training instances, the sensitivity and specificity
      of their algorithm was 76% on the remaining 192 instances.
    

    Relevant Information:

     Several constraints were placed on the selection of these instances from
     a larger database. In particular, all patients here are females at
     least 21 years old of Pima Indian heritage. ADAP is an adaptive learning
     routine that generates and executes digital analogs of perceptron-like
     devices. It is a unique algorithm; see the paper for details.
    

    Number of Instances: 768

    Number of Attributes: 8 plus class

    For Each Attribute: (all numeric-valued)

    1. Number of times pregnant
    2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
    3. Diastolic blood pressure (mm Hg)
    4. Triceps skin fold thickness (mm)
    5. 2-Hour serum insulin (mu U/ml)
    6. Body mass index (weight in kg/(height in m)^2)
    7. Diabetes pedigree function
    8. Age (years)
    9. Class variable (0 or 1)

    Missing Attribute Values: Yes

    Class Distribution: (class value 1 is interpreted as "tested positive for

    diabetes")

    Class Value Number of instances 0 500 1 268

    Brief statistical analysis:

    Attribute number:  Mean:  Standard Deviation:
    1.           3.8   3.4
    2.          120.9  32.0
    3.          69.1  19.4
    4.          20.5  16.0
    5.          79.8  115.2
    6.          32.0   7.9
    7.           0.5   0.3
    8.          33.2  11.8
    
  4. h

    pima-indians-diabetes-database

    • huggingface.co
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khoa Nguyen (2025). pima-indians-diabetes-database [Dataset]. https://huggingface.co/datasets/khoaguin/pima-indians-diabetes-database
    Explore at:
    Dataset updated
    Nov 26, 2025
    Authors
    Khoa Nguyen
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Pima Indians Diabetes Dataset Split

    This directory contains split datasets of Pima Indians Diabetes Database. For each splits, we have

    Mock data: The mock data is a smaller dataset (10 rows for both train and test) that is used to test the model and data processing code. Private data: Each private data contains 123-125 rows for training, and 32-33 rows for testing.

  5. Pima Indians Diabetes Dataset

    • kaggle.com
    zip
    Updated May 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gözde Kızılkaya Atik (2025). Pima Indians Diabetes Dataset [Dataset]. https://www.kaggle.com/datasets/gzdekzlkaya/pima-indians-diabetes-dataset
    Explore at:
    zip(9148 bytes)Available download formats
    Dataset updated
    May 16, 2025
    Authors
    Gözde Kızılkaya Atik
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    🩺 Dataset Overview

    This dataset is used for predicting whether a patient has diabetes based on diagnostic health data. It originates from the National Institute of Diabetes and Digestive and Kidney Diseases and includes measurements from female patients of Pima Indian heritage.

    Each record represents a patient and includes 8 medical features plus a binary outcome (0: no diabetes, 1: diabetes).

    🔍 Features

    • Pregnancies: Number of times pregnant
    • Glucose: Plasma glucose concentration
    • BloodPressure: Diastolic blood pressure (mm Hg)
    • SkinThickness: Triceps skinfold thickness (mm)
    • Insulin: 2-Hour serum insulin (mu U/ml)
    • BMI: Body mass index
    • DiabetesPedigreeFunction: Diabetes likelihood based on family history
    • Age: Age in years
    • Outcome: Diabetes diagnosis result (1 = positive, 0 = negative)

    📊 Use Cases

    • Binary classification models
    • Feature importance and model interpretability (e.g., SHAP)
    • Logistic Regression, Decision Trees, Neural Networks
    • Medical diagnosis support tools

    📎 Notes

    • No personally identifiable information is included.
    • This dataset is widely used for educational and research purposes.
  6. t

    Pima Indians Diabetes - Dataset - LDM

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Pima Indians Diabetes - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/pima-indians-diabetes
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    The dataset used in this study for exploring white-box attacks and defenses on quantum neural networks under depolarization noise.

  7. Missing Values (Pima Indians Diabetes data)

    • kaggle.com
    zip
    Updated Apr 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vishvaa Chhatrara (2021). Missing Values (Pima Indians Diabetes data) [Dataset]. https://www.kaggle.com/datasets/vishvaachhatrara/missing-values-pima-indians-diabetes-data
    Explore at:
    zip(8977 bytes)Available download formats
    Dataset updated
    Apr 10, 2021
    Authors
    Vishvaa Chhatrara
    Description

    Dataset

    This dataset was created by Vishvaa Chhatrara

    Contents

  8. Pima Indians Diabetes

    • kaggle.com
    zip
    Updated Mar 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Biplav Kant (2022). Pima Indians Diabetes [Dataset]. https://www.kaggle.com/datasets/biplavkant/pima-indians-diabetes
    Explore at:
    zip(9154 bytes)Available download formats
    Dataset updated
    Mar 25, 2022
    Authors
    Biplav Kant
    Description

    We will use pima indian diabetes dataset to predict if a person has a diabetes or not based on certain features such as blood pressure, skin thickness, age etc. We will train a standalone model first and then use bagging ensemble technique to check how it can improve the performance of the model

  9. Pima Indians Diabetes data set

    • kaggle.com
    zip
    Updated Jan 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FNUR (2024). Pima Indians Diabetes data set [Dataset]. https://www.kaggle.com/datasets/fatmanu/veriseti
    Explore at:
    zip(9684 bytes)Available download formats
    Dataset updated
    Jan 4, 2024
    Authors
    FNUR
    Description

    Pima Indians Diabetes data set

    1: Description.

    From National Institute of Diabetes and Digestive and Kidney Diseases. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

    The class label represents if the person has not diabetes (tested_negative) or the person has diabetes (tested_positive).

    Attribute information:

    1. Preg = Number of times pregnant
    2. Plas = Plasma glucose concentration a 2 hours in an oral glucose tolerance test
    3. Pres = Diastolic blood pressure (mm Hg)
    4. Skin = Triceps skin fold thickness (mm)
    5. Insu = 2-Hour serum insulin (mu U/ml)
    6. Mass = Body mass index (weight in kg/(height in m)^2)
    7. Pedi = Diabetes pedigree function
    8. Age = Age (years)

    2: Type. Classification
    3: Origin. Real world 4: Instances. 768 5: Features. 8 6: Classes. 2
    7: Missing values. No

    8: Header.

    @relation pima @attribute Preg real [0.0, 17.0] @attribute Plas real [0.0, 199.0] @attribute Pres real [0.0, 122.0] @attribute Skin real [0.0, 99.0] @attribute Insu real [0.0, 846.0] @attribute Mass real [0.0, 67.1] @attribute Pedi real [0.078, 2.42] @attribute Age real [21.0, 81.0] @attribute Class {tested_negative, tested_positive} @inputs Preg, Plas, Pres, Skin, Insu, Mass, Pedi, Age @outputs Class

  10. f

    PIMA Indians diabetes dataset classification result.

    • plos.figshare.com
    xls
    Updated May 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nur Farahaina Idris; Mohd Arfian Ismail; Mohd Izham Mohd Jaya; Ashraf Osman Ibrahim; Anas W. Abulfaraj; Faisal Binzagr (2024). PIMA Indians diabetes dataset classification result. [Dataset]. http://doi.org/10.1371/journal.pone.0302595.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 8, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Nur Farahaina Idris; Mohd Arfian Ismail; Mohd Izham Mohd Jaya; Ashraf Osman Ibrahim; Anas W. Abulfaraj; Faisal Binzagr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PIMA Indians diabetes dataset classification result.

  11. Pima Indians Diabetes Database

    • kaggle.com
    zip
    Updated Jan 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PAVAN KUMAR D (2021). Pima Indians Diabetes Database [Dataset]. https://www.kaggle.com/datasets/mragpavank/diabetes
    Explore at:
    zip(9128 bytes)Available download formats
    Dataset updated
    Jan 21, 2021
    Authors
    PAVAN KUMAR D
    Description

    Dataset

    This dataset was created by PAVAN KUMAR D

    Contents

  12. [Global Dataset] Pima Indians Diabetes

    • kaggle.com
    zip
    Updated Apr 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manas Garg (2021). [Global Dataset] Pima Indians Diabetes [Dataset]. https://www.kaggle.com/gargmanas/pima-indians-diabetes
    Explore at:
    zip(9001 bytes)Available download formats
    Dataset updated
    Apr 30, 2021
    Authors
    Manas Garg
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Description

    Context

    Share key insights, awesome visualizations, or simply discuss advantages of data, any observed or known properties, challenges, problems, corrections, and any other helpful comments! Post and discuss recent published works that utilize this dataset (including your own). Any and all feedback is welcome and encouraged.

  13. s

    Citation Trends for "DIABETES MELLITUS IN AMERICAN (PIMA) INDIANS"

    • shibatadb.com
    Updated Jul 15, 1971
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yubetsu (1971). Citation Trends for "DIABETES MELLITUS IN AMERICAN (PIMA) INDIANS" [Dataset]. https://www.shibatadb.com/article/bE95mm8w
    Explore at:
    Dataset updated
    Jul 15, 1971
    Dataset authored and provided by
    Yubetsu
    License

    https://www.shibatadb.com/license/data/proprietary/v1.0/license.txthttps://www.shibatadb.com/license/data/proprietary/v1.0/license.txt

    Time period covered
    1971 - 2025
    Area covered
    United States
    Variables measured
    New Citations per Year
    Description

    Yearly citation counts for the publication titled "DIABETES MELLITUS IN AMERICAN (PIMA) INDIANS".

  14. Pima Indians Diabetes Dataset

    • kaggle.com
    zip
    Updated Feb 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Siva (2020). Pima Indians Diabetes Dataset [Dataset]. https://www.kaggle.com/aviskumar/pima-indians-dataset
    Explore at:
    zip(9074 bytes)Available download formats
    Dataset updated
    Feb 9, 2020
    Authors
    Siva
    Description

    Dataset

    This dataset was created by Siva

    Contents

  15. Pima Indians Diabetes Dataset

    • kaggle.com
    zip
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Faheem (2025). Pima Indians Diabetes Dataset [Dataset]. https://www.kaggle.com/datasets/faheem7866/pima-indians-diabetes-dataset
    Explore at:
    zip(1303 bytes)Available download formats
    Dataset updated
    May 13, 2025
    Authors
    Muhammad Faheem
    Description

    Dataset

    This dataset was created by Muhammad Faheem

    Contents

  16. Diabetes prediction dataset classification result.

    • plos.figshare.com
    xls
    Updated May 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nur Farahaina Idris; Mohd Arfian Ismail; Mohd Izham Mohd Jaya; Ashraf Osman Ibrahim; Anas W. Abulfaraj; Faisal Binzagr (2024). Diabetes prediction dataset classification result. [Dataset]. http://doi.org/10.1371/journal.pone.0302595.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 8, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Nur Farahaina Idris; Mohd Arfian Ismail; Mohd Izham Mohd Jaya; Ashraf Osman Ibrahim; Anas W. Abulfaraj; Faisal Binzagr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Diabetes prediction dataset classification result.

  17. Pima Indians Diabetes (PID).

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fei Ye; Xin Yuan Lou; Lin Fu Sun (2023). Pima Indians Diabetes (PID). [Dataset]. http://doi.org/10.1371/journal.pone.0173516.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Fei Ye; Xin Yuan Lou; Lin Fu Sun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pima Indians Diabetes (PID).

  18. Pima Indians Diabetes Dataset

    • kaggle.com
    zip
    Updated Aug 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MOKIREDDY ARAVIND REDDY (2021). Pima Indians Diabetes Dataset [Dataset]. https://www.kaggle.com/datasets/aravindreddym/pima-indians-diabetes-dataset
    Explore at:
    zip(9170 bytes)Available download formats
    Dataset updated
    Aug 10, 2021
    Authors
    MOKIREDDY ARAVIND REDDY
    Description

    Dataset

    This dataset was created by MOKIREDDY ARAVIND REDDY

    Contents

  19. Comparing the average error performance of the GLocal-LS-SVM and LS-SVM...

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Youssef Ali Amer (2023). Comparing the average error performance of the GLocal-LS-SVM and LS-SVM applied to the Pima Indians Diabetes dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0285131.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ahmed Youssef Ali Amer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparing the average error performance of the GLocal-LS-SVM and LS-SVM applied to the Pima Indians Diabetes dataset.

  20. pima indians diabetes dataset

    • kaggle.com
    zip
    Updated Oct 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    shivam khatri (2022). pima indians diabetes dataset [Dataset]. https://www.kaggle.com/datasets/shivamkhatri/pima-indians-diabetes-dataset/code
    Explore at:
    zip(9275 bytes)Available download formats
    Dataset updated
    Oct 25, 2022
    Authors
    shivam khatri
    Description

    Dataset

    This dataset was created by shivam khatri

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CUBIG (2025). Pima Indians Diabetes Dataset [Dataset]. https://cubig.ai/store/products/488/pima-indians-diabetes-dataset

Pima Indians Diabetes Dataset

Explore at:
zipAvailable download formats
Dataset updated
Jun 22, 2025
Dataset authored and provided by
CUBIG
License

https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

Measurement technique
Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
Description

1) Data Introduction • The Pima Indians Diabetes Dataset is a tabular medical dataset for predicting diabetes (0: non-diabetic, 1: diabetic) based on health examination data of Pima Indian women in the United States.

2) Data Utilization (1) Pima Indians Diabetes Dataset has characteristics that: • Each row contains eight health indicators, including the number of pregnancies, blood sugar, diastolic blood pressure, arm triceps skin thickness, two-hour blood insulin, BMI, family history-based diabetes risk, and age, as well as binary outcomes (with or without diabetes). • The data is constructed without personal identification information and is widely used in medical diagnosis support and in the practice of various binary classification algorithms. (2) Pima Indians Diabetes Dataset can be used to: • Developing Diabetes Prediction Models: Using health indicator data, we can build a variety of machine learning-based diabetes prediction models such as logistic regression, decision tree, and neural networks. • Medical Data Interpretation and Variable Importance Analysis: It can be used in research to analyze the diabetes prediction contribution and clinical significance of each health variable by applying interpretation techniques such as SHAP.

Search
Clear search
Close search
Google apps
Main menu