Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Pittsburgh by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Pittsburgh. The dataset can be utilized to understand the population distribution of Pittsburgh by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Pittsburgh. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Pittsburgh.
Key observations
Largest age group (population): Male # 25-29 years (16,615) | Female # 20-24 years (18,291). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Pittsburgh Population by Gender. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate of Median Household Income for Allegheny County, PA (MHIPA42003A052NCEN) from 1989 to 2023 about Allegheny County, PA; Pittsburgh; PA; households; median; income; and USA.
This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Unemployed Persons in Pittsburgh, PA (MSA) (LAUMT423830000000004) from Jan 1990 to Jul 2025 about Pittsburgh, PA, household survey, persons, unemployment, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Pittsburgh median household income by race. The dataset can be utilized to understand the racial distribution of Pittsburgh income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Pittsburgh median household income by race. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees: Education and Health Services in Pittsburgh, PA (MSA) (SMU42383006500000001A) from 1990 to 2024 about Pittsburgh, health, PA, education, services, employment, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Pittsburgh. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Pittsburgh, the median income for all workers aged 15 years and older, regardless of work hours, was $43,956 for males and $30,532 for females.
These income figures highlight a substantial gender-based income gap in Pittsburgh. Women, regardless of work hours, earn 69 cents for each dollar earned by men. This significant gender pay gap, approximately 31%, underscores concerning gender-based income inequality in the city of Pittsburgh.
- Full-time workers, aged 15 years and older: In Pittsburgh, among full-time, year-round workers aged 15 years and older, males earned a median income of $67,745, while females earned $56,806, leading to a 16% gender pay gap among full-time workers. This illustrates that women earn 84 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Pittsburgh.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Pittsburgh median household income by race. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This traffic-count data is provided by the City of Pittsburgh's Department of Mobility & Infrastructure (DOMI). Counters were deployed as part of traffic studies, including intersection studies, and studies covering where or whether to install speed humps. In some cases, data may have been collected by the Southwestern Pennsylvania Commission (SPC) or BikePGH.
Data is currently available for only the most-recent count at each location.
Traffic count data is important to the process for deciding where to install speed humps. According to DOMI, they may only be legally installed on streets where traffic counts fall below a minimum threshhold. Residents can request an evaluation of their street as part of DOMI's Neighborhood Traffic Calming Program. The City has also shared data on the impact of the Neighborhood Traffic Calming Program in reducing speeds.
Different studies may collect different data. Speed hump studies capture counts and speeds. SPC and BikePGH conduct counts of cyclists. Intersection studies included in this dataset may not include traffic counts, but reports of individual studies may be requested from the City. Despite the lack of count data, intersection studies are included to facilitate data requests.
Data captured by different types of counting devices are included in this data. StatTrak counters are in use by the City, and capture data on counts and speeds. More information about these devices may be found on the company's website. Data includes traffic counts and average speeds, and may also include separate counts of bicycles.
Tubes are deployed by both SPC and BikePGH and used to count cyclists. SPC may also deploy video counters to collect data.
NOTE: The data in this dataset has not updated since 2021 because of a broken data feed. We're working to fix it.
This study used crime count data from the Pittsburgh, Pennsylvania, Bureau of Police offense reports and 911 computer-aided dispatch (CAD) calls to determine the best univariate forecast method for crime and to evaluate the value of leading indicator crime forecast models. The researchers used the rolling-horizon experimental design, a design that maximizes the number of forecasts for a given time series at different times and under different conditions. Under this design, several forecast models are used to make alternative forecasts in parallel. For each forecast model included in an experiment, the researchers estimated models on training data, forecasted one month ahead to new data not previously seen by the model, and calculated and saved the forecast error. Then they added the observed value of the previously forecasted data point to the next month's training data, dropped the oldest historical data point, and forecasted the following month's data point. This process continued over a number of months. A total of 15 statistical datasets and 3 geographic information systems (GIS) shapefiles resulted from this study. The statistical datasets consist of Univariate Forecast Data by Police Precinct (Dataset 1) with 3,240 cases Output Data from the Univariate Forecasting Program: Sectors and Forecast Errors (Dataset 2) with 17,892 cases Multivariate, Leading Indicator Forecast Data by Grid Cell (Dataset 3) with 5,940 cases Output Data from the 911 Drug Calls Forecast Program (Dataset 4) with 5,112 cases Output Data from the Part One Property Crimes Forecast Program (Dataset 5) with 5,112 cases Output Data from the Part One Violent Crimes Forecast Program (Dataset 6) with 5,112 cases Input Data for the Regression Forecast Program for 911 Drug Calls (Dataset 7) with 10,011 cases Input Data for the Regression Forecast Program for Part One Property Crimes (Dataset 8) with 10,011 cases Input Data for the Regression Forecast Program for Part One Violent Crimes (Dataset 9) with 10,011 cases Output Data from Regression Forecast Program for 911 Drug Calls: Estimated Coefficients for Leading Indicator Models (Dataset 10) with 36 cases Output Data from Regression Forecast Program for Part One Property Crimes: Estimated Coefficients for Leading Indicator Models (Dataset 11) with 36 cases Output Data from Regression Forecast Program for Part One Violent Crimes: Estimated Coefficients for Leading Indicator Models (Dataset 12) with 36 cases Output Data from Regression Forecast Program for 911 Drug Calls: Forecast Errors (Dataset 13) with 4,936 cases Output Data from Regression Forecast Program for Part One Property Crimes: Forecast Errors (Dataset 14) with 4,936 cases Output Data from Regression Forecast Program for Part One Violent Crimes: Forecast Errors (Dataset 15) with 4,936 cases. The GIS Shapefiles (Dataset 16) are provided with the study in a single zip file: Included are polygon data for the 4,000 foot, square, uniform grid system used for much of the Pittsburgh crime data (grid400); polygon data for the 6 police precincts, alternatively called districts or zones, of Pittsburgh(policedist); and polygon data for the 3 major rivers in Pittsburgh the Allegheny, Monongahela, and Ohio (rivers).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Pittsburgh population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Pittsburgh across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Pittsburgh was 303,255, a 0.15% increase year-by-year from 2022. Previously, in 2022, Pittsburgh population was 302,799, a decline of 0.85% compared to a population of 305,400 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Pittsburgh decreased by 30,340. In this period, the peak population was 333,595 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Pittsburgh Population by Year. You can refer the same here
In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. Green space is defined as Trees & Forest and Grass & Herbaceous. Water is shown as "-99999" in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
This EnviroAtlas dataset shows the boundary of the Pittsburgh, PA Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Pittsburgh, PA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Pittsburgh median household income. You can refer the same here
This dataset provides information about the number of properties, residents, and average property values for Mcknight Road cross streets in Pittsburgh, PA.
This dataset provides information about the number of properties, residents, and average property values for Pennsylvania Avenue cross streets in Pittsburgh, PA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Unemployment Rate in Pittsburgh, PA (MSA) (PITT342URN) from Jan 1990 to Jul 2025 about Pittsburgh, PA, unemployment, rate, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Per Capita Personal Income for Pittsburgh, PA (MSA) (RPIPC38300) from 2008 to 2023 about Pittsburgh, PA, personal income, per capita, personal, income, real, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Total Quarterly Wages in Pittsburgh, PA (MSA) (ENUC383030010SA) from Q1 1990 to Q4 2024 about Pittsburgh, PA, wages, and USA.
This dataset provides information about the number of properties, residents, and average property values for Haven Street cross streets in Pittsburgh, PA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees: Service-Providing in Pittsburgh, PA (MSA) (SMU42383000700000001) from Jan 1990 to Jul 2025 about Pittsburgh, PA, services, employment, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Pittsburgh by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Pittsburgh. The dataset can be utilized to understand the population distribution of Pittsburgh by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Pittsburgh. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Pittsburgh.
Key observations
Largest age group (population): Male # 25-29 years (16,615) | Female # 20-24 years (18,291). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Pittsburgh Population by Gender. You can refer the same here