Unlock precise, high-quality GIS data covering 43M+ verified locations across the USA. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.
Key use cases of GIS Data helping our customers :
This layer shows race and ethnicity data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P5, P9 Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global digital map service market size is projected to grow significantly, from approximately $18.9 billion in 2023 to an estimated $53.1 billion by 2032, reflecting a compelling Compound Annual Growth Rate (CAGR) of 12.5%. This robust growth is driven by the increasing adoption of digital mapping technologies across diverse industries and the rising demand for real-time geographic and navigation data in both consumer and enterprise applications.
One of the primary growth factors for the digital map service market is the expanding use of digital maps in the automotive sector, particularly in the development of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles. These technologies rely heavily on precise and up-to-date mapping data for navigation, obstacle detection, and other functionalities, making digital maps indispensable. Additionally, the proliferation of mobile devices and the integration of mapping services in applications such as ride-sharing, logistics, and local search have significantly contributed to market expansion.
Another significant driver is the increasing reliance on Geographic Information Systems (GIS) across various industries. GIS technology enables organizations to analyze spatial information, improve decision-making processes, and enhance operational efficiencies. Industries such as government, defense, agriculture, and urban planning utilize GIS for land use planning, disaster management, and resource allocation, among other applications. The continuous advancements in GIS technology and the integration of artificial intelligence (AI) and machine learning (ML) are expected to further propel market growth.
The rising demand for real-time location data is also a crucial factor fueling the growth of the digital map service market. Real-time location data is essential for applications such as fleet management, asset tracking, and public safety. Businesses leverage this data to optimize routes, monitor assets, and enhance customer service. The increasing implementation of Internet of Things (IoT) devices and the growing importance of location-based services are likely to sustain the demand for real-time mapping solutions in the coming years.
Regionally, North America leads the digital map service market, driven by the high adoption rate of advanced technologies and the presence of major players in the region. However, the Asia Pacific region is expected to witness the fastest growth, attributed to rapid urbanization, increasing smartphone penetration, and government initiatives to develop smart cities. Europe, Latin America, and the Middle East & Africa are also anticipated to experience substantial growth, fueled by the rising demand for digital mapping solutions across various sectors.
In the digital map service market, the service type segment includes mapping and navigation, geographic information systems (GIS), real-time location data, and others. Mapping and navigation services hold a significant share in the market, primarily due to their extensive use in personal and commercial navigation systems. These services provide detailed road maps, traffic updates, and route planning, which are essential for everyday commuting and logistics operations. The continuous advancements in navigation technologies, such as integration with AI and ML for predictive analytics, are expected to enhance the accuracy and functionality of these services.
Geographic Information Systems (GIS) represent another critical segment within the digital map service market. GIS technology is widely used in various applications, including urban planning, environmental management, and disaster response. The ability to analyze and visualize spatial data in multiple layers allows organizations to make informed decisions and optimize resource allocation. The integration of GIS with other emerging technologies, such as drones and remote sensing, is further expanding its application scope and driving market growth.
Real-time location data services are gaining traction due to their importance in applications like fleet management, asset tracking, and location-based services. These services provide up-to-the-minute information on the geographical position of assets, vehicles, or individuals, enabling businesses to improve operational efficiency and customer satisfaction. The growing adoption of IoT devices and the increasing need for real-time visibility in supply chain operations are expected to bolster the demand for real-time location data services.</p&
Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.
Key Features:
Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.
Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.
Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.
Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.
Use Cases:
Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.
Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.
E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.
Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.
Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.
Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.
Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.
Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.
Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.
Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!
The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The cartographic boundary files include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The generalized boundaries of most incorporated places in this file are based on those as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CDPs are based on those delineated or updated as part of the the 2023 BAS or the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Knowledge Area Mapping Map market is experiencing robust growth, driven by the increasing need for efficient knowledge management and improved organizational learning within enterprises. The market's expansion is fueled by the rising adoption of digital transformation initiatives across various industries, leading to a surge in data volume and complexity. Organizations are increasingly recognizing the value of effectively mapping their knowledge assets to optimize resource allocation, enhance collaboration, and drive innovation. This market is segmented by application (e.g., training and development, research and development, strategic planning) and type (e.g., software, services). While precise market sizing requires specific data, considering a similar technology market's average CAGR of 15% and a current market size estimate of $500 million (2025), we can project a steady increase in market value, reaching approximately $700 million by 2026 and continuing this upward trend throughout the forecast period. This growth is influenced by factors such as advancements in artificial intelligence (AI) and machine learning (ML), enhancing knowledge mapping capabilities. However, challenges remain, including the integration of knowledge mapping solutions with existing enterprise systems and the need for skilled professionals to effectively manage and interpret the resulting maps. The geographic distribution of the market shows significant potential across various regions. North America and Europe currently hold a dominant market share due to the higher adoption of advanced technologies and a strong focus on knowledge management practices. However, Asia Pacific is expected to show substantial growth in the coming years due to increasing digitalization and a large pool of potential users in countries like China and India. Competitive landscape analysis reveals a mix of established players and emerging startups offering various solutions. The market’s growth will be shaped by ongoing technological advancements, regulatory changes influencing data privacy, and the evolving needs of different industry verticals. Further research into specific application areas and regional markets will provide a more granular understanding of the growth trajectory and opportunities within this dynamic space.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used for this manuscript were derived from multiple sources: Denver Public Health, Esri, Google, and SafeGraph. Any reuse or redistribution of the datasets are subjected to the restrictions of the data providers: Denver Public Health, Esri, Google, and SafeGraph and should consult relevant parties for permissions.1. COVID-19 case dataset were retrieved from Denver Public Health (Link: https://storymaps.arcgis.com/stories/50dbb5e7dfb6495292b71b7d8df56d0a )2. Point of Interests (POIs) data were retrieved from Esri and SafeGraph (Link: https://coronavirus-disasterresponse.hub.arcgis.com/datasets/6c8c635b1ea94001a52bf28179d1e32b/data?selectedAttribute=naics_code) and verified with Google Places Service (Link: https://developers.google.com/maps/documentation/javascript/reference/places-service)3. The activity risk information is accessible from Texas Medical Association (TMA) (Link: https://www.texmed.org/TexasMedicineDetail.aspx?id=54216 )The datasets for risk assessment and mapping are included in a geodatabase. Per SafeGraph data sharing guidelines, raw data cannot be shared publicly. To view the content of the geodatabase, users should have installed ArcGIS Pro 2.7. The geodatabase includes the following:1. POI. Major attributes are locations, name, and daily popularity.2. Denver neighborhood with weekly COVID-19 cases and computed regional risk levels.3. Simulated four travel logs with anchor points provided. Each is a separate point layer.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset accompanies the following publication, please cite this publication if you use this dataset:
Fischer, T. and Milford, M., 2020. Event-Based Visual Place Recognition With Ensembles of Temporal Windows. IEEE Robotics and Automation Letters, 5(4), pp.6924-6931.
@article{fischer2020event, title={Event-Based Visual Place Recognition With Ensembles of Temporal Windows}, author={Fischer, Tobias and Milford, Michael}, journal={IEEE Robotics and Automation Letters}, volume={5}, number={4}, pages={6924--6931}, year={2020} }
The dataset contains six sequences of recordings. For each recording, four files are made available:
A rosbag (*.bag) file with the following contents:
/dvs/events (type: dvs_msgs/EventArray) with the event stream, see https://github.com/uzh-rpg/rpg_dvs_ros)
/dvs/camera_info (type: sensor_msgs/CameraInfo) with the camera info of the DAVIS frame camera
/dvs/image_raw (type: sensor_msgs/Image) with the DAVIS frame camera images
/dvs/imu (sensor_msgs/Imu) with the IMU data of the event camera
An associated *_hot_pixels.txt file that contains the hot pixels for that recording (detected with https://github.com/cedric-scheerlinck/dvs_tools/tree/master/dvs_hot_pixel_filter)
The recordings using a frame-based consumer camera (*.mp4 files)
Associated GPS information (*.nmea) files recorded using the consumer camera - synchronized with the mp4 files.
Note that the timestamps of the event files and frame-based camera files do not match as they were not synchronized during recording time. Please see the associated code repository (https://github.com/Tobias-Fischer/ensemble-event-vpr) for the correct mappings and time offsets between the event recordings and frame-based recordings.
The code repository also contains code to match GPS data between different traverses.
Conservation of migratory birds requires improved understanding of the distribution of and threats to their migratory habitats and pathways. Wind energy development poses a potential threat, which may be reduced if facilities avoid or mitigate impacts in migration concentration areas. However, a current lack of information on the distribution of migratory concentration areas in the western U.S. impedes proactive planning. The Wyoming Natural Diversity Database (WYNDD) and The Nature Conservancy (TNC) developed deductive models of migratory bird concentration areas. Models were based on a synthesis of existing literature and expert knowledge concerning bird migration behavior and ecology, represented through GIS datasets, and validated using expert ratings and known occurrences. Our results were migration maps for four functional groups: raptors, wetland birds, riparian birds, and sparse grassland birds. Key factors included in migration models differed among the four groups, but included streams, topography, wind patterns, wetland size, forage availability, flyway location, proximity to streams, and vegetation type and structure. Experts rated all models as good or very good, and there was significant agreement between species occurrence data and the migration models for all groups except raptors. Our maps provide data to companies and agencies planning Wyoming wind developments. Our approach could be replicated elsewhere to fill critical data gaps and better inform conservation priorities and wind development planning.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Timely and accurate monitoring of impervious surface areas (ISA) is crucial for effective urban planning and sustainable development. Recent advances in remote sensing technologies have enabled global ISA mapping at fine spatial resolution (<30 m) over long time spans (>30 years), offering the opportunity to track global ISA dynamics. However, existing 30 m global long-term ISA datasets suffer from omission and commission issues, affecting their accuracy in practical applications. To address these challenges, we proposed a novel global longterm ISA mapping method and generated a new 30 m global ISA dataset from 1985 to 2021, namely GISA-new. Specifically, to reduce ISA omissions, a multi-temporal Continuous Change Detection and Classification (CCDC) algorithm that accounts for newly added ISA regions (NA-CCDC) was proposed to enhance the diversity and representativeness of the training samples. Meanwhile, a multi-scale iterative (MIA) method was proposed to automatically remove global commissions of various sizes and types. Finally, we collected two independent test datasets with over 100,000 test samples globally for accuracy assessment. Results showed that GISA-new out performed other existing global ISA datasets, such as GISA, WSF-evo, GAIA, and GAUD, achieving the highest overall accuracy (93.12 %), the lowest omission errors (10.50 %), and the lowest commission errors (3.52 %). Furthermore, the spatial distribution of global ISA omissions and commissions was analyzed, revealing more mapping uncertainties in the Northern Hemisphere. In general, the proposed method in this study effectively addressed global ISA omissions and removed commissions at different scales. The generated high-quality GISAnew can serve as a fundamental parameter for a more comprehensive understanding of global urbanization.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Designated Place Boundary Files portray the designated place boundaries for which census data are disseminated. They are available for download in two types: cartographic and digital. Cartographic boundary files depict the geographic areas using only the shorelines of the major land mass of Canada and its coastal islands. Digital boundary files depict the full extent of the geographic areas, including the coastal water area. The files provide a framework for mapping and spatial analysis using commercially available geographic information systems (GIS) or other mapping software.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SEN12 Global Urban Mapping (SEN12_GUM) dataset consists of Sentinel-1 SAR (VV + VH band) and Sentinel-2 MSI (10 spectral bands) satellite images acquired over the same area for 96 training and validation sites and an additional 60 test sites covering unique geographies across the globe. The satellite imagery was acquired as part of the European Space Agency's Earth observation program Copernicus and was preprocessed in Google Earth Engine. Built-up area labels for the 30 training and validation sites located in the United States, Canada, and Australia were obtained from Microsoft's open-access building footprints. The other 66 training sites located outside of the United States, Canada, and Australia are unlabeled but can be used for semi-supervised learning. Labels obtained from the SpaceNet7 dataset are provided for all 60 test sites.
The selected New York City Places point file was created as a guide to New York City’s non-neighborhood place locations that appear in the “New York: A City of Neighborhoods” map poster and webpage. These place locations includes parks, cemeteries, and airports. Best estimates of label centroids were established at a 1:1,000 scale, but are ideally viewed at a 1:50,000 scale.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
A large body of research has demonstrated that land use and urban form can have a significant effect on transportation outcomes. People who live and/or work in compact neighborhoods with a walkable street grid and easy access to public transit, jobs, stores, and services are more likely to have several transportation options to meet their everyday needs. As a result, they can choose to drive less, which reduces their emissions of greenhouse gases and other pollutants compared to people who live and work in places that are not location efficient. Walking, biking, and taking public transit can also save people money and improve their health by encouraging physical activity. The Smart Location Database summarizes several demographic, employment, and built environment variables for every census block group (CBG) in the United States. The database includes indicators of the commonly cited “D” variables shown in the transportation research literature to be related to travel behavior. The Ds include residential and employment density, land use diversity, design of the built environment, access to destinations, and distance to transit. SLD variables can be used as inputs to travel demand models, baseline data for scenario planning studies, and combined into composite indicators characterizing the relative location efficiency of CBG within U.S. metropolitan regions. This update features the most recent geographic boundaries (2019 Census Block Groups) and new and expanded sources of data used to calculate variables. Entirely new variables have been added and the methods used to calculate some of the SLD variables have changed. More information on the National Walkability index: https://www.epa.gov/smartgrowth/smart-location-mapping More information on the Smart Location Calculator: https://www.slc.gsa.gov/slc/
Participatory mapping is a general term applied to activities that work with participants to gather and map spatial information to help communities learn, discuss, build consensus, and make decisions about their communities and associated resources (NOAA 2015). Here we used participatory mapping to document the locations of different species of berries and understand any social, ecological, or climatological reasons that these locations may be shifting. Mapping was accomplished using topographic basemaps of the villages and surrounding areas overlaid with mylar sheeting. The area surrounding the villages of Hooper Bay and Kotlik were represented with arrays of 1: 63,360 USGS quadrangle topographic maps (USGS, 2017). A 1:250,000 USGS topographic map was utilized for Emmonak, and a 1:500,000 scale community-created place names map in Chevak. Participants identified harvesting locations for each of the five berry species by drawing onto the mylar sheeting using varying colors of markers to represent different species of berries as well as to distinguish between current and historic harvesting areas. Participants were encouraged to draw polygons, but in some cases lines and points were used. Location maps were manually digitized in ArcMap 10.5.1(ESRI 2107 using a USGS topographic digital basemap that matched the scale and extent of the paper maps used during the participatory mapping activity.
Terms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2025. Community and Non-Transient Non-Community Public Water System Service Area (PubV2025_3).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.Layers and Tables:The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.ProductionData UniversePublic Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.Service areas were mapped initially from 2017 to 2022 and reflect varying years for which service is implemented for that service area boundary. WURP maintains the dataset quarterly with annual data updates; however, the dataset may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped because their individual municipal service areas are included in this datalayer.PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.Methodologies and Data SourcesSeveral methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.Verification ProcessSmall-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.Sources of information for estimated drinking water service areasThe following information was used to develop estimated drinking water service areas:EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of developed parcelsTaken directly from a Master Plan, Water Department Website, Open Space Plan, etc. found onlineCalculated using information from the town on the population servedMassDEP staff estimateHorsely Witten Report 2008Calculation based on Water System Areas Mapped through MassDEP WURP Critical Infrastructure Initiative, 2017-2022Information found in publicly available PWS planning documents submitted to MassDEP or as part of infrastructure planningMaintenanceThe
This dataset contains model-based place (incorporated and census designated places) level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities Project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the 2019 Census TIGER/Line place boundary file in a GIS system to produce maps for 29 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=024cf3f6f59e49fe8c70e0e5410fe3cf
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Law of 14 November 1996 implementing the City Recovery Pact (PRV) distinguished three levels of intervention: sensitive urban areas, urban revitalisation zones (ZRUs), urban free zones (ZFU). These three levels of intervention ZUS, ZRU and ZFU, characterised by devices of increasing importance, were intended to respond to different degrees of difficulties encountered in those neighbourhoods. Since then, the Planning Law for City and Urban Cohesion of 21 February 2014 has laid down (Article 5) the modalities for the reform of the priority geography of city policy. Two decrees issued in 2014 (No 2014-767 of 3 July 2014 and No 2014-1575 of 22 December 2014) set out these arrangements for the metropolis and for the ultramarine territories respectively. Thus, the national list of priority neighbourhoods of the city policy (Decrees n°2014-1750 and n° 2014-1751 of 30 December 2014) was produced and the national mapping of their perimeters was published. These perimeters replace sensitive urban areas (SEZs) and urban social cohesion contract (CUCS) neighbourhoods as of 1 January 2015.
The Place Name database is maintained by Survey and Mapping Office of LandsD. The original source of the Database is based on “A Gazetteer of Place Names” with the first edition published in 1960, containing placename features mapped at 1:25,000. The Database stores and maintains names of settlement (e.g. area, town, village), hydrographic features (e.g. river, channel), and topographic features (e.g. relief).
Unlock precise, high-quality GIS data covering 43M+ verified locations across the USA. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.
Key use cases of GIS Data helping our customers :