59 datasets found
  1. United States: lowest point in each state or territory as of 2005

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: lowest point in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325443/lowest-points-united-states-state/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.

  2. United States: average elevation in each state or territory as of 2005

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: average elevation in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325529/lowest-points-united-states-state/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.

  3. a

    U.S. Sea Level Rise - Intermediate-High (2050)

    • socal-sustainability-atlas-claremont.hub.arcgis.com
    • resilience.climate.gov
    • +3more
    Updated Jan 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Claremont Colleges Library (2023). U.S. Sea Level Rise - Intermediate-High (2050) [Dataset]. https://socal-sustainability-atlas-claremont.hub.arcgis.com/datasets/d804daef3c8d463cbd2b8d5a2af8e6b4
    Explore at:
    Dataset updated
    Jan 20, 2023
    Dataset authored and provided by
    The Claremont Colleges Library
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The sea level rise (SLR) coastal inundation layers were created using existing federal products: the (1) NOAA Coastal Digital Elevation Models (DEMs) and (2) 2022 Interagency Sea Level Rise Technical Report Data Files. The DEMs for the Continental United States (CONUS) are provided in North American Vertical Datum 1988 (NAVD 88) and were converted to Mean Higher High Water (MHHW) using the NOAA VDatum conversion surfaces; the elevation values are in meters (m). The NOAA Scenarios of Future Mean Sea Level are provided in centimeters (cm). The MHHW DEMs for CONUS were merged and converted to cm and Scenarios of Future Mean Sea Level were subtracted from the merged DEM. Values below 0 represent areas that are below sea level and are “remapped” to 1, all values above 0 are remapped to “No Data”, creating a map that shows only areas impacted by SLR. Areas protected by levees in Louisiana and Texas were then masked or removed from the results. This was done for each of the emissions scenarios (Lower Emissions = 2022 Intermediate SLR Scenario Higher Emissions = 2022 Intermediate High SLR Scenario) at each of the mapped time intervals (Early Century - Year 2030, Middle Century - Year 2050, and Late Century - Year 2090). The resulting maps are displayed in the CMRA Assessment Tool. County, tract, and tribal geographies summaries of percentage SLR inundation were also calculated using Zonal Statistics tools. The Sea Level Rise Scenario year 2020 is considered “baseline” and the impacts are calculated by subtracting the baseline value from each of the near-term, mid-term and long-term timeframes. General Disclaimer The data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are relative to Mean Higher High Water (MHHW) (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. Hydroconnectivity was not considered in the mapping process. The data and maps in this tool are provided “as is,” without warranty to their performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of these data is assumed by the user. This tool should be used strictly as a planning reference tool and not for navigation, permitting, or other legal purposes. SLR visualizations and statistics are not available in CMRA for Hawaii, Alaska, or U.S. territories at this time. Levees Disclaimer Enclosed levee areas are displayed as gray areas on the maps. Major federal leveed areas were assumed high enough and strong enough to protect against inundation depicted in this viewer, and therefore no inundation was mapped in these regions. Major federal leveed areas were taken from the National Levee Database. Minor (nonfederal) leveed areas were mapped using the best available elevation data that capture leveed features. In some cases, however, breaks in elevation occur along leveed areas because of flood control features being removed from elevation data, limitations of the horizontal and vertical resolution of the elevation data, the occurrence of levee drainage features, and so forth. Flooding behind levees is only depicted if breaks in elevation data occur or if the levee elevations are overtopped by the water surface. At some flood levels, alternate pathways around—not through—levees, walls, dams, and flood gates may exist that allow water to flow into areas protected at lower levels. In general, imperfect levee and elevation data make assessing protection difficult, and small data errors can have large consequences. Citations 2022 Sea Level Rise Technical Report - Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf

  4. U.S. population at risk of rising sea levels by city 2060-2100

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. population at risk of rising sea levels by city 2060-2100 [Dataset]. https://www.statista.com/statistics/1110480/flood-risk-population-sea-level-rise/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In Miami Beach, Florida, around ****** residents live in homes at risk to being flooded by 2060 due to rising sea levels. Florida has many cities that may be lost to coastal erosion as a result of sea level rise, as well as storm surges. The significance of sea level rise is particularly great for the many cities with high values of assets that are under threat.

  5. A

    Surging Seas: Risk Zone Map

    • data.amerigeoss.org
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://data.amerigeoss.org/dataset/surging-seas-risk-zone-map2
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Feb 18, 2019
    Dataset provided by
    AmeriGEOSS
    Description

    Introduction

    Climate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.

    The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.

    This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.

    Back to top


    Methods and Qualifiers

    This map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).

    Areas using lidar-based elevation data: U.S. coastal states except Alaska
    Elevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)).

    Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago.

    CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.

    Warning for areas using other elevation data (all other areas)
    Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.

    SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.

    Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.

    Flood control structures (U.S.)
    Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition

  6. T

    Vital Signs: Vulnerability To Sea Level Rise - Inundation Areas

    • data.bayareametro.gov
    Updated Oct 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation and Development Commission (2021). Vital Signs: Vulnerability To Sea Level Rise - Inundation Areas [Dataset]. https://data.bayareametro.gov/Climate/Vital-Signs-Vulnerability-To-Sea-Level-Rise-Inunda/s67d-byfj
    Explore at:
    xml, csv, application/rdfxml, tsv, application/rssxml, kml, kmz, application/geo+jsonAvailable download formats
    Dataset updated
    Oct 28, 2021
    Dataset authored and provided by
    San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
    Description

    VITAL SIGNS INDICATOR Vulnerability to Sea Level Rise (EN11)

    FULL MEASURE NAME Share of population living in zones at risk from various sea level rise forecast scenarios

    LAST UPDATED July 2017

    DESCRIPTION Vulnerability to sea level rise refers to the share of the historical and current Bay Area population located in areas at risk from forecasted sea level rise over the coming decades. Given that there are varying forecasts for the heightened high tides (i.e., mean highest high water mark), projected sea level impacts are presented for six scenarios ranging from a one foot rise to six feet. A neighborhood is considered vulnerable to sea level rise when at least 10 percent of its land area is forecasted to be inundated by peak high tides in the coming years. The dataset includes at-risk population and population share data for the region, counties, and neighborhoods.

    DATA SOURCE San Francisco Bay Conservation and Development Commission 2017 Sea Level Rise Maps http://www.adaptingtorisingtides.org/project/regional-sea-level-rise-mapping-and-shoreline-analysis/

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Projected areas of inundation were developed by BCDC and NOAA at one-foot intervals ranging from one foot to four feet of sea level rise. Regional and local sea level rise analysis is based on data from BCDC’s ART (Adapting to Rising Tides) Bay Area Sea Level Rise and Mapping Project. This data reflects the most up-to-date and detailed sea level rise mapping for the Bay Area. Sea level rise analysis for metro areas is based on national sea level rise mapping from NOAA, which is best for metro-to-metro comparison. To determine the impacts on historical and current populations, inundation areas were overlaid on a U.S. Census shapefile of 2010 Census tracts using Census Bureau population data.

    Because census tracts can extend beyond the coastline, the baseline scenario of zero feet was used to determine existing sea level coverage of census tracts. Sea level rise refers to the change from this level. The area of the tract was determined by measuring the component of the tract area not currently under water. This area, rather than the total tract area, was used as the denominator to determine the percentage of the census tract that is inundated under future sea level rise projection scenarios. When at least 10 percent of tract land area is inundated with a given sea level, its residents are considered to be affected by sea level rise.

    For the purpose of this analysis, SLR scenarios were assumed not to reflect periodic inundation due to extreme weather events, which may lead to an even greater share of residents affected on a less frequent basis. Prior to the impacts from sea level rise, neighborhoods will experience temporary flooding from extreme weather events which can create significant damage to homes and neighborhoods. It should be noted that by directly reviewing maps and tools through the ART (Adapting to Rising Tides) program, regular inundation sea level rise and temporary flooding from extreme weather events are both available. More information on this approach is available here: http://www.adaptingtorisingtides.org/project/regional-sea-level-rise-mapping-and-shoreline-analysis/

    Sea level rise analysis for metro areas reflects local, as opposed to global, sea level rise. Recent data has shown sea level is rising faster in the southeast region of the United States. Regional differences in the rate of sea level rise. More information and data related to the rate of sea level rise for different coastal regions is available here: https://oceanservice.noaa.gov/facts/sealevel-global-local.html

  7. United States: highest point in each state or territory

    • statista.com
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: highest point in each state or territory [Dataset]. https://www.statista.com/statistics/203932/highest-points-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Aug 8, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 20,310 feet (6.2km) above sea level, the highest point in the United States is Denali, Alaska (formerly known as Mount McKinley). The highest point in the contiguous United States is Mount Whitney, in the Sierra Nevada mountain range in California; followed by Mount Elbert, Colorado - the highest point in the Rocky Mountains. When looking at the highest point in each state, the 13 tallest peaks are all found in the western region of the country, while there is much more diversity across the other regions and territories.

    Despite being approximately 6,500 feet lower than Denali, Hawaii's Mauna Kea is sometimes considered the tallest mountain (and volcano) on earth. This is because its base is well below sea level - the mountain has a total height of 33,474 feet, which is almost 4,500 feet higher than Mount Everest.

  8. A

    36inch Sea Level Rise High Tide

    • data.boston.gov
    • cloudcity.ogopendata.com
    Updated Jul 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Maps (2020). 36inch Sea Level Rise High Tide [Dataset]. https://data.boston.gov/dataset/36inch-sea-level-rise-high-tide
    Explore at:
    html, kml, csv, arcgis geoservices rest api, zip, geojsonAvailable download formats
    Dataset updated
    Jul 8, 2020
    Dataset provided by
    BostonMaps
    Authors
    Boston Maps
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description
    Area of potential coastal and riverine flooding in Boston under various sea level rise scenarios (9-inch in 2030s, 21-inch in 2050s, and 36-inch in 2070s) at high tide and in the event of storms with an annual exceedance probability (AEP) of 10 and 1 percent.

    Learn more about the projections from Climate Ready Boston’s Projections Consensus and data methodology in Climate Ready Boston’s Vulnerability Assessment.

    Source:

    Coastal flood hazard data created as part of Climate Ready Boston are a reanalysis of the coastal flood hazard data developed as part of the MassDOT-FHWA analysis. In 2015, MassDOT released an analysis of coastal flood hazards using state-of-the-art numerical models capable of simulating thousands of potential nor’easters and tropical storms coincident with a range of tide levels, riverine flow rates in the Charles and Mystic Rivers, and sea level rise conditions.

    Definitions:

    9-inch Sea Level Rise: By the end of the 2050s, 9 inches of sea level rise is expected consistently across emissions scenarios and is likely to occur as early as the 2030s. 9” Climate scenario and coastal/riverine hazard flooding data are the MassDOT-FHWA high sea level rise scenario for 2030. Actual sea level rise value is 0.62 feet above 2013 tide levels, with an additional 0.74 inches to account for subsidence.

    21-inch Sea Level Rise: In the second half of the century, 21 inches is expected across all emissions scenarios. 21” Data were interpolated from the MassDOT-FHWA 2030 and 2070/2100 data.

    36-inch Sea Level Rise: The highest sea level rise considered, 36 inches, is highly probable toward the end of the century. This scenario has a greater than 50 percent chance of occurring within this time period for the moderate emissions reduction and business-as-usual scenarios and a nearly 50 percent chance for the major emissions reduction scenario. 36” Climate scenario and coastal/riverine hazard fooding data are the MassDOT-FHWA high sea level rise scenario for 2070/intermediate sea level rise scenario for 2100. Actual sea level rise value is 3.2 feet above 2013 tide levels, with an additional 2.5 inches to account for subsidence.

    High Tide: Average monthly high tide is approximately two feet higher than the commonly used mean higher high water (MHHW, the average of the higher high water levels of each tidal day), and lower than king tides (the twice-a year high tides that occur when the gravitational pulls of the sun and the moon are aligned).

    10% Annual Flood: A “10 percent annual chance flood” is a flood event that has a 1 in 10 chance of occurring in any given year. Another name for this flood, which is the primary coastal flood hazard delineated in FEMA FIRMs, is the “10-year flood.”

    1% Annual Flood: A “1 percent annual chance flood” is a flood event that has a 1 in 100 chance of occurring in any given year. Another name for this flood, which is the primary coastal flood hazard delineated in FEMA FIRMs, is the “100-year flood.”
  9. n

    Sea level rise, groundwater rise, and contaminated sites in the San...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristina Hill; Daniella Hirschfeld; Caroline Lindquist; Forest Cook; Scott Warner (2023). Sea level rise, groundwater rise, and contaminated sites in the San Francisco Bay Area, and Superfund Sites in the contiguous United States [Dataset]. http://doi.org/10.6078/D15X4N
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 22, 2023
    Dataset provided by
    University of California, Berkeley
    UNSW Sydney
    Utah State University
    Authors
    Kristina Hill; Daniella Hirschfeld; Caroline Lindquist; Forest Cook; Scott Warner
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    San Francisco Bay Area, United States
    Description

    Rising sea levels (SLR) will cause coastal groundwater to rise in many coastal urban environments. Inundation of contaminated soils by groundwater rise (GWR) will alter the physical, biological, and geochemical conditions that influence the fate and transport of existing contaminants. These transformed products can be more toxic and/or more mobile under future conditions driven by SLR and GWR. We reviewed the vulnerability of contaminated sites to GWR in a US national database and in a case comparison with the San Francisco Bay region to estimate the risk of rising groundwater to human and ecosystem health. The results show that 326 sites in the US Superfund program may be vulnerable to changes in groundwater depth or flow direction as a result of SLR, representing 18.1 million hectares of contaminated land. In the San Francisco Bay Area, we found that GWR is predicted to impact twice as much coastal land area as inundation from SLR alone, and 5,297 state-managed sites of contamination may be vulnerable to inundation from GWR in a 1-meter SLR scenario. Increases of only a few centimeters of elevation can mobilize soil contaminants, alter flow directions in a heterogeneous urban environment with underground pipes and utility trenches, and result in new exposure pathways. Pumping for flood protection will elevate the salt water interface, changing groundwater salinity and mobilizing metals in soil. Socially vulnerable communities are more exposed to this risk at both the national scale and in a regional comparison with the San Francisco Bay Area. Methods Data Dryad This data set includes data from the California State Water Resources Control Board (WRCB), the California Department of Toxic Substances Control (DTSC), the USGS, the US EPA, and the US Census. National Assessment Data Processing: For this portion of the project, ArcGIS Pro and RStudio software applications were used. Data processing for superfund site contaminants in the text and supplementary materials was done in RStudio using R programming language. RStudio and R were also used to clean population data from the American Community Survey. Packages used include: Dplyr, data.table, and tidyverse to clean and organize data from the EPA and ACS. ArcGIS Pro was used to compute spatial data regarding sites in the risk zone and vulnerable populations. DEM data processed for each state removed any elevation data above 10m, keeping anything 10m and below. The Intersection tool was used to identify superfund sites within the 10m sea level rise risk zone. The Calculate Geometry tool was used to calculate the area within each coastal state that was occupied by the 10m SLR zone and used again to calculate the area of each superfund site. Summary Statistics were used to generate the total proportion of superfund site surface area / 10m SLR area for each state. To generate population estimates of socially vulnerable households in proximity to superfund sites, we followed methods similar to that of Carter and Kalman (2020). First, we generated buffers at the 1km, 3km, and 5km distance of superfund sites. Then, using Tabulate Intersection, the estimated population of each census block group within each buffer zone was calculated. Summary Statistics were used to generate total numbers for each state. Bay Area Data Processing: In this regional study, we compared the groundwater elevation projections by Befus et al (2020) to a combined dataset of contaminated sites that we built from two separate databases (Envirostor and GeoTracker) that are maintained by two independent agencies of the State of California (DTSC and WRCB). We used ArcGIS to manage both the groundwater surfaces, as raster files, from Befus et al (2020) and the State’s point datasets of street addresses for contaminated sites. We used SF BCDC (2020) as the source of social vulnerability rankings for census blocks, using block shapefiles from the US Census (ACS) dataset. In addition, we generated isolines that represent the magnitude of change in groundwater elevation in specific sea level rise scenarios. We compared these isolines of change in elevation to the USGS geological map of the San Francisco Bay region and noted that groundwater is predicted to rise farther inland where Holocene paleochannels meet artificial fill near the shoreline. We also used maps of historic baylands (altered by dikes and fill) from the San Francisco Estuary Institute (SFEI) to identify the number of contaminated sites over rising groundwater that are located on former mudflats and tidal marshes. The contaminated sites' data from the California State Water Resources Control Board (WRCB) and the Department of Toxic Substances (DTSC) was clipped to our study area of nine-bay area counties. The study area does not include the ocean shorelines or the north bay delta area because the water system dynamics differ in deltas. The data was cleaned of any duplicates within each dataset using the Find Identical and Delete Identical tools. Then duplicates between the two datasets were removed by running the intersect tool for the DTSC and WRCB point data. We chose this method over searching for duplicates by name because some sites change names when management is transferred from DTSC to WRCB. Lastly, the datasets were sorted into open and closed sites based on the DTSC and WRCB classifications which are shown in a table in the paper's supplemental material. To calculate areas of rising groundwater, we used data from the USGS paper “Projected groundwater head for coastal California using present-day and future sea-level rise scenarios” by Befus, K. M., Barnard, P., Hoover, D. J., & Erikson, L. (2020). We used the hydraulic conductivity of 1 condition (Kh1) to calculate areas of rising groundwater. We used the Raster Calculator to subtract the existing groundwater head from the groundwater head under a 1-meter of sea level rise scenario to find the areas where groundwater is rising. Using the Reclass Raster tool, we reclassified the data to give every cell with a value of 0.1016 meters (4”) or greater a value of 1. We chose 0.1016 because groundwater rise of that little can leach into pipes and infrastructure. We then used the Raster to Poly tool to generate polygons of areas of groundwater rise.

  10. u

    Predictions of Adjusted Elevation for the 2020s

    • marine.usgs.gov
    Updated May 31, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Predictions of Adjusted Elevation for the 2020s [Dataset]. https://marine.usgs.gov/coastalchangehazardsportal/ui/info/item/EXe6PY5F
    Explore at:
    Dataset updated
    May 31, 2017
    Area covered
    Description

    The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land elevation ranges (AE) with respect to forecast sea-levels, a likelihood estimate of this outcome (PAE), and a probability of coastal response (CR) characterized as either static or dynamic. The predictions span the coastal zone vertically from -12 meters (m) to 10 m above mean high water (MHW). Results are produced at a horizontal resolution of 30 meters for four decades (the 2020s, 2030s, 2050s and 2080s). Adjusted elevations and their respective probabilities are generated using regional geospatial datasets of current sea-level forecasts, vertical land movement rates, and current elevation data. Coastal response type predictions incorporate adjusted elevation predictions with land cover data and expert knowledge to determine the likelihood that an area will be able to accommodate or adapt to water level increases and maintain its initial land class state or transition to a new non-submerged state (dynamic) or become submerged (static). Intended users of these data include scientific researchers, coastal planners, and natural resource management communities.

    These GIS layers provide the probability of observing the forecast of adjusted land elevation (PAE) with respect to predicted sea-level rise or the Northeastern U.S. for the 2020s, 2030s, 2050s and 2080s. These data are based on the following inputs: sea-level rise, vertical land movement rates due to glacial isostatic adjustment and elevation data. The output displays the highest probability among the five adjusted elevation ranges (-12 to -1, -1 to 0, 0 to 1, 1 to 5, and 5 to 10 m) to be observed for the forecast year as defined by a probabilistic framework (a Bayesian network), and should be used concurrently with the adjusted land elevation prediction layer (PAE), also available from http://woodshole.er.usgs.gov/project-pages/coastal_response/, which provides users with the likelihood of elevation range occurring when compared with the four other elevation ranges. These data layers primarily show the distribution of adjusted elevation range probabilities over a large spatial scale and should therefore be used qualitatively.

  11. d

    Metrics for marsh migration under sea-level rise in Chesapeake Bay

    • catalog.data.gov
    • data.usgs.gov
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Metrics for marsh migration under sea-level rise in Chesapeake Bay [Dataset]. https://catalog.data.gov/dataset/metrics-for-marsh-migration-under-sea-level-rise-in-chesapeake-bay
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Chesapeake Bay
    Description

    Marsh migration potential in the Chesapeake Bay (CB) salt marshes is calculated in terms of available migration area for each marsh unit defined by Ackerman and others (2022). The space available for landward migration is based on the NOAA marsh migration predictions under 2.0 feet of local sea-level rise (SLR). The migration space is further divided by National Hydrography Dataset (NHD) Plus catchments before assigning related catchment polygons to each marsh unit. The migration rates are then calculated using present day estimates at the prescribed rate of SLR, which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). Through scientific efforts, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Chesapeake Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. Marsh migration is one of the natural responses to SLR. References: Ackerman, K.V., Defne, Z., and Ganju, N.K., 2022, Geospatial characterization of salt marshes in Chesapeake Bay: U.S. Geological Survey data release, https://doi.org/10.5066/P997EJYB. Sweet, W.V., Hamlington, B.D., Kopp, R.E., Weaver, C.P., Barnard, P.L., Bekaert, D., Brooks, W., Craghan, M., Dusek, G., Frederikse, T., Garner, G., Genz, A.S., Krasting, J.P., Larour, E., Marcy, D., Marra, J.J., Obeysekera, J., Osler, M., Pendleton, M., Roman, D., Schmied, L., Veatch, W., White, K.D., and Zuzak, C., 2022, Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp.

  12. A

    Passive Flooding: Hawaii: 3.2-ft Sea Level Rise Scenario

    • data.amerigeoss.org
    pdf, wfs, wms
    Updated Jul 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). Passive Flooding: Hawaii: 3.2-ft Sea Level Rise Scenario [Dataset]. https://data.amerigeoss.org/pl/dataset/4819f290-ae80-4535-b287-be0bd8cd7dff
    Explore at:
    wms, wfs, pdfAvailable download formats
    Dataset updated
    Jul 26, 2019
    Dataset provided by
    United States
    Area covered
    Hawaii
    Description

    Passive flooding was modeled by the University of Hawaii Coastal Geology Group using a modified "bathtub" approach following methods described in Cooper et al. 2013. The passive flooding model provides an initial assessment of low-lying areas susceptible to flooding by sea level rise. Passive flooding includes areas that are hydrologically connected to the ocean (marine flooding) and low-lying areas that are not hydrologically connected to the ocean (groundwater). Data used in modeling passive flooding include global sea level rise projections, digital elevation models (DEM), and the mean higher high water (MHHW) datum from local tide gauges. DEMs used in this study are freely available from NOAA and the U.S. Army Corps of Engineers (USACE). DEMs are derived from aerial light detection and ranging (LiDAR) data. The horizontal and vertical positional accuracies of the DEMs conform to flood hazard mapping standards of the Federal Emergency Management Agency (FEMA 2012). The IPCC AR5 RCP8.5 sea level rise scenario was used in modeling exposure to passive flooding from sea level rise at 0.5, 1.1, 2.0, and 3.2 feet. This particular layer depicts passive flooding using the 3.2-ft (0.9767-m) sea level rise scenario. While the RCP8.5 predicts that this scenario would be reached by the year 2100, questions remain around the exact timing of sea level rise and recent observations and projections suggest a sooner arrival.

    Passive flooding was modeled using the DEMs in geographic information systems software to identify areas below a certain sea level height (flooded by sea level rise) when raising water levels above current Mean Higher High Water (MHHW) tidal datum. In other words, water levels are shown as they would appear during MHHW, or the average higher high water height of each tidal day. The area flooded was derived by subtracting a tidal surface model from the DEM.

    Assumptions and Limitations: In many areas around the State, representing sea level rise from passive marine flooding will likely produce an underestimate of the area inundated or permanently submerged because the model does not account for waves and coastal erosion, important processes along Hawaii's highly dynamic coasts. For this reason, coastal erosion and annual high wave flooding (provided separately) are also modeled to provide a more comprehensive picture of the extent of hazard exposure.

    The passive flooding model does not explicitly include flooding through storm drain systems and other underground infrastructure, which would contribute to flooding in many low-lying areas identified in the model. The DEMs used in the modeling depict a smoothed topographic surface and do not identify basements, parking garages, and other development below ground that would be affected by marine and groundwater flooding with sea level rise. The passive flooding model is intended to provide an initial screening tool for sea level rise vulnerability. More detailed hydrologic and engineering modeling may be necessary to fully assess passive marine flooding hazards at the scale of individual properties.

    For further information, please see the Hawaii Sea Level Rise Vulnerability and Adaptation Report: http://climateadaptation.hawaii.gov/wp-content/uploads/2017/12/SLR-Report_Dec2017.pdf

  13. A

    21inch Sea Level Rise 1pct Annual Flood

    • data.boston.gov
    • cloudcity.ogopendata.com
    Updated Jul 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Maps (2020). 21inch Sea Level Rise 1pct Annual Flood [Dataset]. https://data.boston.gov/dataset/21inch-sea-level-rise-1pct-annual-flood
    Explore at:
    zip, arcgis geoservices rest api, geojson, kml, html, csvAvailable download formats
    Dataset updated
    Jul 8, 2020
    Dataset provided by
    BostonMaps
    Authors
    Boston Maps
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description
    Area of potential coastal and riverine flooding in Boston under various sea level rise scenarios (9-inch in 2030s, 21-inch in 2050s, and 36-inch in 2070s) at high tide and in the event of storms with an annual exceedance probability (AEP) of 10 and 1 percent.

    Learn more about the projections from Climate Ready Boston’s Projections Consensus and data methodology in Climate Ready Boston’s Vulnerability Assessment.

    Source:

    Coastal flood hazard data created as part of Climate Ready Boston are a reanalysis of the coastal flood hazard data developed as part of the MassDOT-FHWA analysis. In 2015, MassDOT released an analysis of coastal flood hazards using state-of-the-art numerical models capable of simulating thousands of potential nor’easters and tropical storms coincident with a range of tide levels, riverine flow rates in the Charles and Mystic Rivers, and sea level rise conditions.

    Definitions:

    9-inch Sea Level Rise: By the end of the 2050s, 9 inches of sea level rise is expected consistently across emissions scenarios and is likely to occur as early as the 2030s. 9” Climate scenario and coastal/riverine hazard flooding data are the MassDOT-FHWA high sea level rise scenario for 2030. Actual sea level rise value is 0.62 feet above 2013 tide levels, with an additional 0.74 inches to account for subsidence.

    21-inch Sea Level Rise: In the second half of the century, 21 inches is expected across all emissions scenarios. 21” Data were interpolated from the MassDOT-FHWA 2030 and 2070/2100 data.

    36-inch Sea Level Rise: The highest sea level rise considered, 36 inches, is highly probable toward the end of the century. This scenario has a greater than 50 percent chance of occurring within this time period for the moderate emissions reduction and business-as-usual scenarios and a nearly 50 percent chance for the major emissions reduction scenario. 36” Climate scenario and coastal/riverine hazard fooding data are the MassDOT-FHWA high sea level rise scenario for 2070/intermediate sea level rise scenario for 2100. Actual sea level rise value is 3.2 feet above 2013 tide levels, with an additional 2.5 inches to account for subsidence.

    High Tide: Average monthly high tide is approximately two feet higher than the commonly used mean higher high water (MHHW, the average of the higher high water levels of each tidal day), and lower than king tides (the twice-a year high tides that occur when the gravitational pulls of the sun and the moon are aligned).

    10% Annual Flood: A “10 percent annual chance flood” is a flood event that has a 1 in 10 chance of occurring in any given year. Another name for this flood, which is the primary coastal flood hazard delineated in FEMA FIRMs, is the “10-year flood.”

    1% Annual Flood: A “1 percent annual chance flood” is a flood event that has a 1 in 100 chance of occurring in any given year. Another name for this flood, which is the primary coastal flood hazard delineated in FEMA FIRMs, is the “100-year flood.”
  14. Operative nuclear sites worldwide under projected sea level rise risk 2021

    • statista.com
    Updated Oct 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Operative nuclear sites worldwide under projected sea level rise risk 2021 [Dataset]. https://www.statista.com/statistics/1339324/global-nuclear-sites-under-projected-sea-level-rise-risk/
    Explore at:
    Dataset updated
    Oct 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Worldwide
    Description

    According to a climate scenario realized in 2021, around 30 nuclear sites worldwide would be exposed to a sea level rise between 50 and 88 centimeters, if the climate policies tackling global warming are not followed. The nuclear sites at risk of the highest sea level rise are located in the United States (U.S.) and they represent almost 38 percent of the total ranked nuclear sites. Over 40 percent of the endangered nuclear sites are located in Japan, at a total of 12 nuclear plants. This figure indicates that more than one in three nuclear power reactors present in this country would be at risk. Many of the listed nuclear sites (shown in red) will be at risk of high winds as well, creating the conditions for extreme precipitation events concurrent to floods.

  15. d

    30 meter Esri binary grids of predicted elevation with respect to projected...

    • datadiscoverystudio.org
    html, zip
    Updated May 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). 30 meter Esri binary grids of predicted elevation with respect to projected sea levels for the Northeastern U.S. from Maine to Virginia for the 2020s, 2030s, 2050s and 2080s (Albers, NAD 83). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/bba6cdb64da74bd9974ecaf4ae07d1f7/html
    Explore at:
    html, zipAvailable download formats
    Dataset updated
    May 21, 2018
    Description

    description: The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land elevation ranges (AE) with respect to forecast sea-levels, a likelihood estimate of this outcome (PAE), and a probability of coastal response (CR) characterized as either static or dynamic. The predictions span the coastal zone vertically from -12 meters (m) to 10 m above mean high water (MHW). Results are produced at a horizontal resolution of 30 meters for four decades (the 2020s, 2030s, 2050s and 2080s). Adjusted elevations and their respective probabilities are generated using regional geospatial datasets of current sea-level forecasts, vertical land movement rates, and current elevation data. Coastal response type predictions incorporate adjusted elevation predictions with land cover data and expert knowledge to determine the likelihood that an area will be able to accommodate or adapt to water level increases and maintain its initial land class state or transition to a new non-submerged state (dynamic) or become submerged (static). Intended users of these data include scientific researchers, coastal planners, and natural resource management communities.; abstract: The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land elevation ranges (AE) with respect to forecast sea-levels, a likelihood estimate of this outcome (PAE), and a probability of coastal response (CR) characterized as either static or dynamic. The predictions span the coastal zone vertically from -12 meters (m) to 10 m above mean high water (MHW). Results are produced at a horizontal resolution of 30 meters for four decades (the 2020s, 2030s, 2050s and 2080s). Adjusted elevations and their respective probabilities are generated using regional geospatial datasets of current sea-level forecasts, vertical land movement rates, and current elevation data. Coastal response type predictions incorporate adjusted elevation predictions with land cover data and expert knowledge to determine the likelihood that an area will be able to accommodate or adapt to water level increases and maintain its initial land class state or transition to a new non-submerged state (dynamic) or become submerged (static). Intended users of these data include scientific researchers, coastal planners, and natural resource management communities.

  16. u

    Coastal Response Predictions for the 2050s

    • marine.usgs.gov
    Updated Jan 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Coastal Response Predictions for the 2050s [Dataset]. https://marine.usgs.gov/coastalchangehazardsportal/ui/info/item/EXfWQWoV
    Explore at:
    Dataset updated
    Jan 14, 2020
    Area covered
    Description

    The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provide outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land elevation ranges (AE) with respect to forecast sea-levels, a likelihood estimate of this outcome (PAE), and a probability of coastal response (CR) characterized as either static or dynamic. The predictions span the coastal zone vertically from -12 meters (m) to 10 m above mean high water (MHW). Results are produced at a horizontal resolution of 30 meters for four decades (the 2020s, 2030s, 2050s and 2080s). Coastal response type predictions incorporate adjusted elevation predictions with land cover data and expert knowledge to determine the likelihood that an area will be able to accommodate or adapt to water level increases and maintain its initial land class state or transition to a new non-submerged state (dynamic) or become submerged (static). Intended users of these data include scientific researchers, coastal planners, and natural resource management communities.

    These GIS layers provide the probability of observing a static vs. dynamic coastal response (CR) with respect to predicted sea-level rise for the Northeastern U.S. for the 2020s, 2030s, 2050s and 2080s. These data are based on the following inputs: sea-level rise, vertical land movement rates due to glacial isostatic adjustment, elevation data, and land cover data. The output displays a probability based on binary end members for the forecast year as defined by a probabilistic framework (a Bayesian network). Because the static vs dynamic coastal response is a binary relationship, the dynamic (i.e. landform or landscape change) coastal response can be derived by subtracting the static response from 1 (and vice versa). These data layers primarily show the distribution of likely coastal response types over a large spatial scale and should therefore be used qualitatively.

  17. A

    Mean Higher High Water (MHHW) Sea Level: Honolulu, Hawaii

    • data.amerigeoss.org
    • data.ioos.us
    • +1more
    wfs, wms
    Updated Jul 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IOOS (2019). Mean Higher High Water (MHHW) Sea Level: Honolulu, Hawaii [Dataset]. https://data.amerigeoss.org/hu/dataset/9be48f07-923e-4bc7-8086-2a742d9c146c
    Explore at:
    wfs, wmsAvailable download formats
    Dataset updated
    Jul 15, 2019
    Dataset provided by
    IOOS
    Area covered
    Hawaii, Honolulu
    Description

    The single value tidal water surface of mean higher high water (MHHW) modeled at the Honolulu tide gauge is used to represent present-day sea level for the urban corridor stretching from Honolulu International Airport to Waikiki and Diamond Head along the south shore of Oahu in the state of Hawaii. Water levels are shown as they would appear during the highest high tides (excluding wind-driven tides). Land elevation was derived using a National Geospatial Agency (NGA)-provided digital elevation model (DEM) based on LiDAR data of the Honolulu area collected in 2009. This "bare earth" DEM (vegetation and structures removed) was used to represent the current topography of the study area above zero elevation. The accuracy of the DEM was validated using a selection of 16 Tidal Benchmarks located within the study area. Data produced in 2014 by Dr. Charles "Chip" Fletcher of the department of Geology & Geophysics (G&G) in the School of Ocean and Earth Science and Technology (SOEST) of the University of Hawaii at Manoa. Supported in part by the NOAA Coastal Storms Program (CSP) and the University of Hawaii Sea Grant College Program. These data should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.

  18. A

    Passive Flooding: Hawaii: 1.1-ft Sea Level Rise Scenario

    • data.amerigeoss.org
    pdf, wfs, wms
    Updated Jul 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Passive Flooding: Hawaii: 1.1-ft Sea Level Rise Scenario [Dataset]. https://data.amerigeoss.org/ja/dataset/passive-flooding-hawaii-1-1-ft-sea-level-rise-scenario
    Explore at:
    wfs, wms, pdfAvailable download formats
    Dataset updated
    Jul 25, 2019
    Dataset provided by
    United States[old]
    Area covered
    Hawaii
    Description

    Passive flooding was modeled by the University of Hawaii Coastal Geology Group using a modified "bathtub" approach following methods described in Cooper et al. 2013. The passive flooding model provides an initial assessment of low-lying areas susceptible to flooding by sea level rise. Passive flooding includes areas that are hydrologically connected to the ocean (marine flooding) and low-lying areas that are not hydrologically connected to the ocean (groundwater). Data used in modeling passive flooding include global sea level rise projections, digital elevation models (DEM), and the mean higher high water (MHHW) datum from local tide gauges. DEMs used in this study are freely available from NOAA and the U.S. Army Corps of Engineers (USACE). DEMs are derived from aerial light detection and ranging (LiDAR) data. The horizontal and vertical positional accuracies of the DEMs conform to flood hazard mapping standards of the Federal Emergency Management Agency (FEMA 2012). The IPCC AR5 RCP8.5 sea level rise scenario was used in modeling exposure to passive flooding from sea level rise at 0.5, 1.1, 2.0, and 3.2 feet. This particular layer depicts passive flooding using the 1.1-ft (0.3224-m) sea level rise scenario. While the RCP8.5 predicts that this scenario would be reached by the year 2050, questions remain around the exact timing of sea level rise and recent observations and projections suggest a sooner arrival.

    Passive flooding was modeled using the DEMs in geographic information systems software to identify areas below a certain sea level height (flooded by sea level rise) when raising water levels above current Mean Higher High Water (MHHW) tidal datum. In other words, water levels are shown as they would appear during MHHW, or the average higher high water height of each tidal day. The area flooded was derived by subtracting a tidal surface model from the DEM.

    Assumptions and Limitations: In many areas around the State, representing sea level rise from passive marine flooding will likely produce an underestimate of the area inundated or permanently submerged because the model does not account for waves and coastal erosion, important processes along Hawaii's highly dynamic coasts. For this reason, coastal erosion and annual high wave flooding (provided separately) are also modeled to provide a more comprehensive picture of the extent of hazard exposure.

    The passive flooding model does not explicitly include flooding through storm drain systems and other underground infrastructure, which would contribute to flooding in many low-lying areas identified in the model. The DEMs used in the modeling depict a smoothed topographic surface and do not identify basements, parking garages, and other development below ground that would be affected by marine and groundwater flooding with sea level rise. The passive flooding model is intended to provide an initial screening tool for sea level rise vulnerability. More detailed hydrologic and engineering modeling may be necessary to fully assess passive marine flooding hazards at the scale of individual properties.

    For further information, please see the Hawaii Sea Level Rise Vulnerability and Adaptation Report: http://climateadaptation.hawaii.gov/wp-content/uploads/2017/12/SLR-Report_Dec2017.pdf

  19. Sea level rise projections in the U.S. 2020-2099, by scenario

    • statista.com
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Sea level rise projections in the U.S. 2020-2099, by scenario [Dataset]. https://www.statista.com/statistics/1453469/sea-level-rise-projection-in-the-us-by-scenario/
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United States
    Description

    Sea levels are projected to rise in the United States across various Shared Socioeconomic Pathways (SSP). Under the SSP1-2.6 scenario, it is projected that U.S. sea levels will rise 7.71 centimeters (cm) during the next decades, and 15.99 cm by the mid-century, relative to historic baseline. Sea levels will continue rising to reach 31.96 cm by 2099, following the same scenario.

  20. I

    Sea Level Rise Inundation: 1-ft Scenario: Honolulu, Hawaii

    • data.ioos.us
    • datasets.ai
    • +1more
    wfs, wms
    Updated Nov 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PacIOOS (2024). Sea Level Rise Inundation: 1-ft Scenario: Honolulu, Hawaii [Dataset]. https://data.ioos.us/dataset/sea-level-rise-inundation-1-ft-scenario-honolulu-hawaii
    Explore at:
    wfs, wmsAvailable download formats
    Dataset updated
    Nov 15, 2024
    Dataset authored and provided by
    PacIOOS
    Area covered
    Hawaii, Honolulu
    Description

    This map shows coastal flooding around Honolulu, Hawaii due to 1 foot (0.305 m) of sea level rise. This scenario was derived using a National Geospatial Agency (NGA)-provided digital elevation model (DEM) based on LiDAR data of the Honolulu area collected in 2009. This "bare earth" DEM (vegetation and structures removed) was used to represent the current topography of the study area above zero elevation for the urban corridor stretching from Honolulu International Airport to Waikiki and Diamond Head along the south shore of Oahu. The accuracy of the DEM was validated using a selection of 16 Tidal Benchmarks located within the study area. The single value tidal water surface of mean higher high water (MHHW) modeled at the Honolulu tide gauge was used to represent sea level for the purposes of this study. Water levels are shown as they would appear during the highest high tides (excluding wind-driven tides).

    Data produced in 2014 by Dr. Charles "Chip" Fletcher of the department of Geology & Geophysics (G&G) in the School of Ocean and Earth Science and Technology (SOEST) of the University of Hawaii at Manoa. Supported in part by the NOAA Coastal Storms Program (CSP) and the University of Hawaii Sea Grant College Program. These data do not consider future changes in coastal geomorphology and natural processes such as erosion, subsidence, or future construction. These data do not specify timing of inundation depths and are not appropriate for conducting detailed spatial analysis. The entire risk associated with the results and performance of these data is assumed by the user. These data should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). United States: lowest point in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325443/lowest-points-united-states-state/
Organization logo

United States: lowest point in each state or territory as of 2005

Explore at:
Dataset updated
Aug 9, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2005
Area covered
United States
Description

At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.

Search
Clear search
Close search
Google apps
Main menu