This map was created in order to display public parcel data at small and large scales. The spatial point data is aggregated by the State of Colorado Governor's Office of Information Technology Geospatial Information Systems Team.
A polygonal representation of the Assessment Map Index for the City and County of Denver.
OSA web map to view State of Colorado property data
An Index of the Existing Waste Water Plat Maps for the City and County of Denver.
This web map created by the Colorado Governor's Office of Information Technology GIS team, serves as a basemap specific to the state of Colorado. The basemap includes general layers such as counties, municipalities, roads, waterbodies, state parks, national forests, national wilderness areas, and trails.Layers:Layer descriptions and sources can be found below. Layers have been modified to only represent features within Colorado and are not up to date. Layers last updated February 23, 2023. Colorado State Extent: Description: “This layer provides generalized boundaries for the 50 States and the District of Columbia.” Notes: This layer was filtered to only include the State of ColoradoSource: Esri Living Atlas USA States Generalized Boundaries Feature LayerState Wildlife Areas:Description: “This data was created by the CPW GIS Unit. Property boundaries are created by dissolving CDOWParcels by the property name, and property type and appending State Park boundaries designated as having public access. All parcel data correspond to legal transactions made by the CPW Real Estate Unit. The boundaries of the CDOW Parcels were digitized using metes and bounds, BLM's GCDB dataset, the PLSS dataset (where the GCDB dataset was unavailable) and using existing digital data on the boundaries.” Notes: The state wildlife areas layer in this basemap is filtered from the CPW Managed Properties (public access only) layer from this feature layer hosted in ArcGIS Online Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerMunicipal Boundaries:Description: "Boundaries data from the State Demography Office of Colorado Municipalities provided by the Department of Local Affairs (DOLA)"Source: Colorado Information Marketplace Municipal Boundaries in ColoradoCounties:Description: “This layer presents the USA 2020 Census County (or County Equivalent) boundaries of the United States in the 50 states and the District of Columbia. It is updated annually as County (or County Equivalent) boundaries change. The geography is sources from US Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrology to add a detailed coastline for cartographic purposes. Geography last updated May 2022.” Notes: This layer was filtered to only include counties in the State of ColoradoSource: Esri USA Census Counties Feature LayerInterstates:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: Interstates are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointU.S. Highways:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: U.S. Highways are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointState Highways:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: State Highways are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointMajor Roads:Description: Authoritative data from the Colorado Department of Transportation representing major roads Source: Colorado Department of Transportation Major Roads REST EndpointLocal Roads:Description: Authoritative data from the Colorado Department of Transportation representing local roads Source: Colorado Department of Transportation Local Roads REST EndpointRail Lines:Description: Authoritative data from the Colorado Department of Transportation representing rail lines Source: Colorado Department of Transportation Rail Lines REST EndpointCOTREX Trails:Description: “The Colorado Trail System, now titled the Colorado Trail Explorer (COTREX), endeavors to map every trail in the state of Colorado. Currently their are nearly 40,000 miles of trails mapped. Trails come from a variety of sources (USFS, BLM, local parks & recreation departments, local governments). Responsibility for accuracy of the data rests with the source.These data were last updated on 2/5/2019” Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerNHD Waterbodies:Description: “The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.”Notes: This layer was filtered to only include waterbodies in the State of ColoradoSource: National Hydrography Dataset Plus Version 2.1 Feature LayerNHD Flowlines:Description: “The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.”Notes: This layer was filtered to only include flowline features in the State of ColoradoSource: National Hydrography Dataset Plus Version 2.1 Feature LayerState Parks:Description: “This data was created by the CPW GIS Unit. Property boundaries are created by dissolving CDOWParcels by the property name, and property type and appending State Park boundaries designated as having public access. All parcel data correspond to legal transactions made by the CPW Real Estate Unit. The boundaries of the CDOW Parcels were digitized using metes and bounds, BLM's GCDB dataset, the PLSS dataset (where the GCDB dataset was unavailable) and using existing digital data on the boundaries.” Notes: The state parks layer in this basemap is filtered from the CPW Managed Properties (public access only) layer from this feature layer Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerDenver Parks:Description: "This dataset should be used as a reference to locate parks, golf courses, and recreation centers managed by the Department of Parks and Recreation in the City and County of Denver. Data is based on parcel ownership and does not include other areas maintained by the department such as medians and parkways. The data should be used for planning and design purposes and cartographic purposes only."Source: City and County of Denver Parks REST EndpointNational Wilderness Areas:Description: “A parcel of Forest Service land congressionally designated as wilderness such as National Wilderness Area.”Notes: This layer was filtered to only include National Wilderness Areas in the State of ColoradoSource: United States Department of Agriculture National Wilderness Areas REST EndpointNational Forests: Description: “A depiction of the boundaries encompassing the National Forest System (NFS) lands within the original proclaimed National Forests, along with subsequent Executive Orders, Proclamations, Public Laws, Public Land Orders, Secretary of Agriculture Orders, and Secretary of Interior Orders creating modifications thereto, along with lands added to the NFS which have taken on the status of 'reserved from the public domain' under the General Exchange Act. The following area types are included: National Forest, Experimental Area, Experimental Forest, Experimental Range, Land Utilization Project, National Grassland, Purchase Unit, and Special Management Area.”Notes: This layer was filtered to only include National Forests in the State of ColoradoSource: United States Department of Agriculture Original Proclaimed National Forests REST Endpoint
Vector polygon map data of property parcels from Denver, Colorado containing 231,961 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Vector polygon map data of property parcels from El Paso County, Colorado containing 249,578 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Fort Collins Parcel dataset on ESRI's Open Data Portal. These include Larimer County Parcel Numbers.
Subdivision Plats and Annexations Maps For the City of Loveland, Colorado.
Vector polygon map data of property parcels from Fremont County, Colorado containing 28,590 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
OSA Dev Map Public to display employee locations, transportation, and facilities.
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive layer (resdept) and surface rock size and cover. Accuracy and error estimated using a 10-fold cross validation indicated a range of model performances with coefficient of variation (R2) for models ranging from 0.20 to 0.76 with mean of 0.52 and a standard deviation of 0.12. Models of pH, om and ec had the best accuracy (R2 > 0.6). Most texture fractions, CaCO3, and SAR models had R2 values from 0.5-0.6. Models of kwfact, dbovendry, resdept, rock models, gypsum and awc had R2 values from 0.4-0.5 excepting near surface models which tended to perform better. Very fine sands and 200 cm estimates for other models generally performed poorly (R2 from 0.2-0.4), and sample size for the 200 cm models was too low for reliable model building. More than 90% of the soils data used was sampled since 2000, but some older samples are included. Uncertainty estimates were also developed by creating relative prediction intervals, which allow end users to evaluate uncertainty easily.
Vector polygon map data of property parcels from Huerfano County, Colorado containing 17,622 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive layer (resdept) and surface rock size and cover. Accuracy and error estimated using a 10-fold cross validation indicated a range of model performances with coefficient of variation (R2) for models ranging from 0.20 to 0.76 with mean of 0.52 and a standard deviation of 0.12. Models of pH, om and ec had the best accuracy (R2 > 0.6). Most texture fractions, CaCO3, and SAR models had R2 values from 0.5-0.6. Models of kwfact, dbovendry, resdept, rock models, gypsum and awc had R2 values from 0.4-0.5 excepting near surface models which tended to perform better. Very fine sands and 200 cm estimates for other models generally performed poorly (R2 from 0.2-0.4), and sample size for the 200 cm models was too low for reliable model building. More than 90% of the soils data used was sampled since 2000, but some older samples are included. Uncertainty estimates were also developed by creating relative prediction intervals, which allow end users to evaluate uncertainty easily.
Vector polygon map data of property parcels from Pueblo County, Colorado containing 103,228 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive layer (resdept) and surface rock size and cover. Accuracy and error estimated using a 10-fold cross validation indicated a range of model performances with coefficient of variation (R2) for models ranging from 0.20 to 0.76 with mean of 0.52 and a standard deviation of 0.12. Models of pH, om and ec had the best accuracy (R2 > 0.6). Most texture fractions, CaCO3, and SAR models had R2 values from 0.5-0.6. Models of kwfact, dbovendry, resdept, rock models, gypsum and awc had R2 values from 0.4-0.5 excepting near surface models which tended to perform better. Very fine sands and 200 cm estimates for other models generally performed poorly (R2 from 0.2-0.4), and sample size for the 200 cm models was too low for reliable model building. More than 90% of the soils data used was sampled since 2000, but some older samples are included. Uncertainty estimates were also developed by creating relative prediction intervals, which allow end users to evaluate uncertainty easily.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Parcels by ownership in Jefferson County CO
Platted parcels of the City of Aurora, Colorado. For ownership parcels, please see the county's GIS parcel data. The City of Aurora, Colorado sits in three different counties: Adams County, Arapahoe County, and Douglas County and lies just east of the City and County of Denver. The city's population was recently estimated over 400,000. Currently, the city is approximately 158 square miles and is annexing land in enclaves and to the east of the city.
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive layer (resdept) and surface rock size and cover. Accuracy and error estimated using a 10-fold cross validation indicated a range of model performances with coefficient of variation (R2) for models ranging from 0.20 to 0.76 with mean of 0.52 and a standard deviation of 0.12. Models of pH, om and ec had the best accuracy (R2 > 0.6). Most texture fractions, CaCO3, and SAR models had R2 values from 0.5-0.6. Models of kwfact, dbovendry, resdept, rock models, gypsum and awc had R2 values from 0.4-0.5 excepting near surface models which tended to perform better. Very fine sands and 200 cm estimates for other models generally performed poorly (R2 from 0.2-0.4), and sample size for the 200 cm models was too low for reliable model building. More than 90% of the soils data used was sampled since 2000, but some older samples are included. Uncertainty estimates were also developed by creating relative prediction intervals, which allow end users to evaluate uncertainty easily.
Data Citation
Please cite this dataset as follows:
Vasquez, V., Cushman, K., Ramos, P., Williamson, C., Villareal, P., Gomez Correa, L. F., & Muller-Landau, H. (2023). Barro Colorado Island 50-ha plot crown maps: manually segmented and instance segmented. (Version 2). Smithsonian Tropical Research Institute. https://doi.org/10.25573/data.24784053
This data is licensed as CC BY 4.0 and is thus freely available for reuse with proper citation. We ask that data users share any resulting publications, preprints, associated analysis code, and derived data products with us by emailing mullerh@si.edu. We are open to contributing our expert knowledge of the study site and datasets to projects that use these data; please direct queries regarding potential collaboration to Vicente Vasquez, vasquezv@si.edu, and Helene Muller-Landau, mullerh@si.edu.
Note that this dataset is part of a collection of Panama UAV data on Smithsonian Figshare, which can be viewed at https://smithsonian.figshare.com/projects/Panama_Forest_Landscapes_UAV/115572
Additional information about this research can be found at the Muller-Landau lab web site at https://hmullerlandau.com/
All required code is freely available at https://github.com/P-polycephalum/ForestLandscapes/blob/main/LandscapeScripts/segmentation.py and it can be cited as:
Vicente Vasquez. (2023). P-polycephalum/ForestLandscapes: segmentwise (v0.0.2-beta). Zenodo. https://doi.org/10.5281/zenodo.10380517
Data Description
This dataset is part of a larger initiative monitoring forests in Panama using drones (unoccupied aerial vehicles), an initiative led by Dr. Helene Muller- Landau at the Smithsonian Tropical Research Institute. As part of this initiative, we have been collecting repeat imagery of the 50-ha forest dynamics plot on Barro Colorado Island (BCI), Panama, since October 2014 (see Garcia et al. 2021a, b for data products for 2014-2019).
Contained within this dataset are two sets of field-derived crown maps, presented in both their raw and improved versions. The 2021 crown mapping campaign was overseen by KC Cushman, accompanied by field technician Pablo Ramos and Paulino Villarreal. Additionally, Cecilia Williamson and KC Cushman reviewed polygon quality and made necessary corrections. Image data occurred on August 1, 2020, utilizing a DJI Phantom 4 Pro at a resolution of 4cm per pixel. A total of 2454 polygons were manually delineated, encompassing insightful metrics like crown completeness and liana load.
The 2023 crown mapping campaign, led by Vicente Vasquez and field technicians Pablo Ramos, Paulino Villarreal, involved quality revisions and corrections performed by Luisa Fernanda Gomez Correa and Vicente Vasquez. Image data collection occurred on September 29, 2022, utilizing a DJI Phantom 4 Pro drone at a 4cm per pixel resolution. The 2023 campaign integrated model 230103_randresize_full of the detectree2 model garden (Ball, 2023). Tree crown polygons were generated pre-field visit, with those attaining a field validation score of 7 or higher retained as true tree crowns.
The data collection forms are prepared using ArcGIS field maps. The creator of the data forms uses the spatial points from the trees in the ForestGeo 50-ha censuses to facilitate finding the tree tags in the field (Condit et al., 2019). The field technicians confirm that the tree crown is visible from the drone imagery, they proceed to collect variables of interest and delineate the tree crown manually. In the case of the 2023 field campaign, the field technicians were able to skip manual delineation when the polygons generated by 230103_randresize_full were evaluated as true detection.
The improved version of the 2023 and 2021 crown map data collection takes as input the raw crown maps and the globally aligned orthomosaics to refine the edges of the crown. We use the model SAM from segment-anything module developed my Meta AI (Krillov, 2023). We adapted the use of their instance segmentation algorithm to take geospatial imagery in the form of tiles. We inputted multiple bounding boxes in the form of CPU torch tensors for each of the files. Furthermore, we perform several tasks to clean the crowns and remove the polygons overlaps to avoid ambiguity. This results in a very well delineated crown map with no overlapping between tree crowns. Despite our diligent efforts in detecting, delineating, and evaluating all visible tree crowns from drone imagery, this dataset exhibits certain limitations. These include missing tags denoted as -9999, erroneous manual delineations or instance segmentation of tree crown polygons, duplicated tags, and undetected tree crowns. These limitations are primarily attributed to human error, logistical constraints, and the challenge of confirming individual tree crown emergence above the canopy. In numerous instances, particularly within densel... Visit https://dataone.org/datasets/doi%3A10.60635%2FC3PP4J for complete metadata about this dataset.
This map was created in order to display public parcel data at small and large scales. The spatial point data is aggregated by the State of Colorado Governor's Office of Information Technology Geospatial Information Systems Team.