70 datasets found
  1. a

    Tectonic Plates and Boundaries

    • hub.arcgis.com
    Updated Aug 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Tectonic Plates and Boundaries [Dataset]. https://hub.arcgis.com/maps/5113817f8b00453494fd5cf64c099ef9
    Explore at:
    Dataset updated
    Aug 5, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    Tectonic plates are pieces of Earth's crust and upper mantle called the lithosphere and are about 100 km thick. There are two main types of plates: oceanic and continental, each composed of different materials. The formation and movement of these plates generates everything from the shape and orientation of continents to the mountains and trenches on Earth. The plates layer shows major and minor plates. Microplates are not included in this map. This version of the tectonic plates and boundaries was derived from Peter Bird in Geochemistry Geophysics Geosystems, 4(3), 1027, [doi:10.1029/2001GC000252]. The full publication can be read here. Processing of the 2014 version of the data into GIS formats was done by Hugo Ahlenius.

  2. New maps of global geologic provinces and tectonic plates: global tectonics...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Derrick Hasterok; Derrick Hasterok; Jaqueline Halpin; Jaqueline Halpin; Alan Collins; Alan Collins; Martin Hand; Martin Hand; Corné Kreemer; Corné Kreemer; Matthew Gard; Matthew Gard; Stijn Glorie; Stijn Glorie (2022). New maps of global geologic provinces and tectonic plates: global tectonics data and QGIS project file [Dataset]. http://doi.org/10.5281/zenodo.6586972
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 17, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Derrick Hasterok; Derrick Hasterok; Jaqueline Halpin; Jaqueline Halpin; Alan Collins; Alan Collins; Martin Hand; Martin Hand; Corné Kreemer; Corné Kreemer; Matthew Gard; Matthew Gard; Stijn Glorie; Stijn Glorie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The global tectonics data compilation is a set of raster and vector data that are useful for investigating tectonics past and present. The datasets are useful on their own or can be used in GIS software, which includes the QGIS project file for convenience. The datasets include our new models for tectonic plate boundaries and deformation zones, geologic provinces and orogens. Additional datasets include earthquake and volcano locations, geochronology, topography, magnetics, gravity, and seismic velocity.

    The global tectonics collection is suitable for research and educational purposes.

  3. a

    Plate Boundaries

    • hub.arcgis.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Plate Boundaries [Dataset]. https://hub.arcgis.com/datasets/mpmkr::tectonic-plate-boundaries?layer=0
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    MapMaker
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    The Earth’s lithosphere is made up of a series of plates that float on the mantle. Scientists think the convection of the mantle causes these plates to move triggering earthquakes, volcanoes, mountain-building events, or trench formation. These plates creep along at a rate of approximately five to ten centimeters (two to four inches) per year. These plates move in primarily three main ways. They slide past one another along transform (strike-slip) boundaries, they push against each other at convergent boundaries, or pull away in opposite directions at divergent boundaries. Each one of these interactions create different types of landforms. For example, the steady pressure of the Indian Plate and the Eurasian Plate built the Himalaya mountains and the Plateau of Tibet. The divergent boundary between the African Plate and the Arabian formed the Red Sea.Use this plate map layer to explore how the movement of the plates cause earthquakes, volcanoes, or shape Earth’s landscape.

    This map layer features both major and minor plates, but excludes microplates. The data is from the scientific study by Peter Bird published in volume 4, issue 3 of Geochemisty, Geophysics, Geosystems and was translated into geospatial formats by Hugo Ahlenius and updated by Dan Pisut.

  4. Plate Boundaries

    • africageoportal.com
    • cartong-esriaiddev.opendata.arcgis.com
    • +1more
    Updated Aug 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Plate Boundaries [Dataset]. https://www.africageoportal.com/maps/e221cbaf69d140a88aeaaaf9a5541952
    Explore at:
    Dataset updated
    Aug 6, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The surface of the Earth is broken up into large plates. There are seven major plates: North America, South America, Eurasia, Africa, India, the Pacific, and Antarctica. There are also numerous microplates. The number and shapes of the plates change over geologic time. Plates are divided by boundaries that are seismically active. The different plate boundaries can be described by the type of motion that is occurring between the plates at specific locations. Ocean basins contain spreading ridges where the youngest portions of the seafloor are found. At the spreading ridges magma is released as it pushes up from the mantle and new oceanic crust is formed. At subduction zone boundaries plates are moving toward each other, with one plate subducting or moving beneath the other. When this occurs the crust is pushed into the mantle where it is recycled into magma.Data accessed from here: https://www-udc.ig.utexas.edu/external/plates/data.htm

  5. Tectonic Plate Boundaries

    • hub.arcgis.com
    • amerigeo.org
    • +1more
    Updated Sep 29, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2014). Tectonic Plate Boundaries [Dataset]. https://hub.arcgis.com/datasets/Education::tectonic-plate-boundaries-1/explore
    Explore at:
    Dataset updated
    Sep 29, 2014
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Area covered
    Description

    117 original plate boundaries from Esri Data and Maps (2007) edited to better match 10 years of earthquakes, land forms and bathymetry from Mapping Our World's WSI_Earth image from module 2. Esri Canada's education layer of plate boundaries and the Smithsonian's ascii file from the download section of the 'This Dynamic Planet' site plate boundaries were used to compare the resulting final plate boundaries for significant differences.

  6. e

    Global Pattern - Plate Tectonics - MapMaker

    • gisinschools.eagle.co.nz
    • resources-gisinschools-nz.hub.arcgis.com
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2024). Global Pattern - Plate Tectonics - MapMaker [Dataset]. https://gisinschools.eagle.co.nz/datasets/global-pattern-plate-tectonics-mapmaker
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    A web application for use in explaining the global distribution of earthquakes and volcanoes and why they are located where they are - specifically designed for use with NCEA Level 1 Geography.Layers that can be turned on in this application:- Tectonic Plate Boundaries- Recent Earthquakes- Archived Earthquakes- Global VolcanoesStudents can export their maps to a PDF or screenshot their maps.You do not have to have an ArcGIS Schools Bundle to access this web application.

  7. NZL GNS GM11 plate boundaries

    • geodata.nz
    Updated Oct 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GNS Science (2019). NZL GNS GM11 plate boundaries [Dataset]. https://geodata.nz/geonetwork/srv/api/records/058D330A-A91D-4239-949C-DFAA635337BB
    Explore at:
    www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Oct 24, 2019
    Dataset provided by
    GNS Sciencehttp://www.gns.cri.nz/
    Area covered
    Description

    This layer shows the interpreted surface locations of active plate and microplate boundaries, in and around Te Riu-a-Māui / Zealandia. The layer was newly-compiled for, and is part of, the 'Tectonic map of Te Riu-a-Māui / Zealandia' 1:8 500 000 dataset.

  8. n

    The PALEOMAP Project: Paleogeographic Atlas, Plate Tectonic Software, and...

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). The PALEOMAP Project: Paleogeographic Atlas, Plate Tectonic Software, and Paleoclimate Reconstructions [Dataset]. https://access.earthdata.nasa.gov/collections/C1214607516-SCIOPS
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    The PALEOMAP project produces paleogreographic maps illustrating the Earth's plate tectonic, paleogeographic, climatic, oceanographic and biogeographic development from the Precambrian to the Modern World and beyond.

    A series of digital data sets has been produced consisting of plate tectonic data, climatically sensitive lithofacies, and biogeographic data. Software has been devloped to plot maps using the PALEOMAP plate tectonic model and digital geographic data sets: PGIS/Mac, Plate Tracker for Windows 95, Paleocontinental Mapper and Editor (PCME), Earth System History GIS (ESH-GIS), PaleoGIS(uses ArcView), and PALEOMAPPER.

    Teaching materials for educators including atlases, slide sets, VHS animations, JPEG images and CD-ROM digital images.

    Some PALEOMAP products include: Plate Tectonic Computer Animation (VHS) illustrating motions of the continents during the last 850 million years.

    Paleogeographic Atlas consisting of 20 full color paleogeographic maps. (Scotese, 1997).

    Paleogeographic Atlas Slide Set (35mm)

    Paleogeographic Digital Images (JPEG, PC/Mac diskettes)

    Paleogeographic Digital Image Archive (EPS, PC/Mac Zip disk) consists of the complete digital archive of original digital graphic files used to produce plate tectonic and paleographic maps for the Paleographic Atlas.

    GIS software such as PaleoGIS and ESH-GIS.

  9. a

    Global Earthquakes 7/12/2017-7/12/2018 Map

    • hub.arcgis.com
    • data-tga.opendata.arcgis.com
    • +1more
    Updated Jul 31, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tennessee Geographic Alliance (2018). Global Earthquakes 7/12/2017-7/12/2018 Map [Dataset]. https://hub.arcgis.com/maps/tga::global-earthquakes-7-12-2017-7-12-2018-map
    Explore at:
    Dataset updated
    Jul 31, 2018
    Dataset authored and provided by
    Tennessee Geographic Alliance
    Area covered
    Description

    This map depicts one year of global earthquakes and plate boundaries. Click on an earthquake for details about that event. Data is from the USGS Earthquake Catalog.If you have questions about the table, read the documentation from the USGS.

  10. n

    Data from: Digital Geologic Map of the Butler Peak 7.5' Quadrangle, San...

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Digital Geologic Map of the Butler Peak 7.5' Quadrangle, San Bernardino County, California [Dataset]. https://access.earthdata.nasa.gov/collections/C2231549734-CEOS_EXTRA
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 2000 - Dec 31, 2000
    Area covered
    Description

    The data set for the Butler Peak quadrangle has been prepared by the Southern California Areal Mapping Project (SCAMP), a cooperative project sponsored jointly by the U.S. Geological Survey and the California Division of Mines and Geology, as part of an ongoing effort to utilize a Geographical Information System (GIS) format to create a regional digital geologic database for southern California. This regional database is being developed as a contribution to the National Geologic Map Data Base of the National Cooperative Geologic Mapping Program of the USGS. Development of the data set for the Butler Peak quadrangle has also been supported by the U.S. Forest Service, San Bernardino National Forest.

    The digital geologic map database for the Butler Peak quadrangle has been created as a general-purpose data set that is applicable to other land-related investigations in the earth and biological sciences. For example, the U.S. Forest Service, San Bernardino National Forest, is using the database as part of a study of an endangered plant species that shows preference for particular rock type environments. The Butler Peak database is not suitable for site-specific geologic evaluations at scales greater than 1:24,000 (1 in = 2,000 ft).

    This data set maps and describes the geology of the Butler Peak 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage showing geologic contacts and units,(2) a scanned topographic base at a scale of 1:24,000, and (3) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map on a 1:24,000 topographic base accompanied by a Description of Map Units (DMU), a Correlation of Map Units (CMU), and a key to point and line symbols; (2) PDF files of the DMU and CMU, and of this Readme, and (3) this metadata file.

    The geologic map data base contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map was created by transferring lines from the aerial photographs to a 1:24,000 mylar orthophoto-quadrangle and then to a base-stable topographic map. This map was then scribed, and a .007 mil, right-reading, black line clear film made by contact photographic processes.The black line was scanned and auto-vectorized by Optronics Specialty Company, Northridge, CA. The non-attributed scan was imported into ARC/INFO, where the database was built. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.

  11. Major Crustal Boundaries of Australia (2D) - 2024 Edition

    • ecat.ga.gov.au
    Updated Jul 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2024). Major Crustal Boundaries of Australia (2D) - 2024 Edition [Dataset]. https://ecat.ga.gov.au/geonetwork/eng/api/records/ce57a8df-4815-43f4-b66d-92b08d66ff18
    Explore at:
    www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Jul 5, 2024
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Time period covered
    Jun 30, 2024 - Jun 30, 2026
    Area covered
    Description
    The ‘Major crustal boundaries of Australia’ data set synthesises more than 40 years of acquisition of deep seismic reflection data across Australia, where major crustal-scale breaks, often inferred to be relict sutures between different crustal blocks, have been interpreted in the seismic reflection profiles. The widespread coverage of the seismic profiles now provides the opportunity to construct a map of major crustal boundaries across Australia. Starting with the locations of the crustal breaks identified in the seismic profiles, geological (e.g. outcrop mapping, drill hole, geochronology, isotope) and geophysical (e.g. gravity, aeromagnetic, magnetotelluric, passive seismic) data are used to map the crustal boundaries, in map view, away from the seismic profiles. For some of these boundaries, a high level of confidence can be placed on the location, whereas the location of other boundaries can only be considered to have medium or low confidence. In other areas, especially in regions covered by thick sedimentary successions, the locations of some crustal boundaries are essentially unconstrained.
    The ‘Major crustal boundaries of Australia’ map shows the locations of inferred ancient plate boundaries, and will provide constraints on the three dimensional architecture of Australia. It allows a better understanding of how the Australian continent was constructed from the Mesoarchean through to the Phanerozoic, and how this evolution and these boundaries have controlled metallogenesis. It is best viewed as a dynamic dataset, which will need to be refined and updated as new information, such as new seismic reflection data, becomes available.

  12. n

    Integrated CEOS European Data Server

    • cmr.earthdata.nasa.gov
    • access.earthdata.nasa.gov
    zip
    Updated Apr 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Integrated CEOS European Data Server [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214615136-SCIOPS.html
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 24, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    ESYS plc and the Department of Geomatic Engineering at University College London (UCL) have been funded by the British National Space Centre (BNSC) to develop a web GIS service to serve geographic data derived from remote sensing datasets. Funding was provided as part of the BNSC International Co-operation Programme 2 (ICP-2).

    Particular aims of the project were to:

    1. use Open Geospatial Consortium (OGC, recently renamed from the OpenGIS Consortium) technologies for map and data serving;

    2. serve datasets for Europe and Africa, particularly Landsat TM and Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data;

    3. provide a website giving access to the served data;

    4. provide software scripts, etc., and a document reporting the data processing and software set-up methods developed during the project.

    ICEDS was inspired in particular by the Committee on Earth Observing Satellites (CEOS) CEOS Landsat and SRTM Project (CLASP) proposal. An express intention of ICEDS (aim 4 in the list above) was therefore that the solution developed by ESYS and UCL should be redistributable, for example, to other CEOS members. This was taken to mean not only software scripts but also the methods developed by the project team to prepare the data and set up the server. In order to be compatible with aim 4, it was also felt that the use of Open Source, or at least 'free-of-cost' software for the Web GIS serving was an essential component. After an initial survey of the Web GIS packages available at the time , the ICEDS team decided to use the Deegree package, a free software initiative founded by the GIS and Remote Sensing unit of the Department of Geography, University of Bonn , and lat/lon . However the Red Spider web mapping software suite was also provided by IONIC Software - this is a commercial web mapping package but was provided pro bono by IONIC for this project and has been used in parallel to investigate the possibilities and limitations opened up by using a commercial package.

    http://iceds.ge.ucl.ac.uk/

  13. c

    Bedrock Geology Set

    • deepmaps.ct.gov
    • data.ct.gov
    • +4more
    Updated Aug 27, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy & Environmental Protection (2019). Bedrock Geology Set [Dataset]. https://deepmaps.ct.gov/maps/a765e96b0c05413da1dcbea0ae86707d
    Explore at:
    Dataset updated
    Aug 27, 2019
    Dataset authored and provided by
    Department of Energy & Environmental Protection
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Bedrock Geology Set is a 1:50,000-scale, polygon and line feature-based layer describing the solid material that underlies the soil or other unconsolidated material of the earth for Connecticut. Bedrock geologic formations are described as polygons in terms of formation name (incorporating geologic age), rock type, and tectonic terrane association. Tectonic forces are responsible for the present day geologic configuration of the continents. Resulting terranes are regionally fault bounded rocks of a similar tectonic history. Each terrane is named after its plate tectonics ancestry. Geologic lines include contacts, faults, and terrane boundaries. Terrane boundaries are named for the faults involved. The geologic contacts and faults are delineated and classified by type. Polygon feature attribute information is comprised of codes to identify individual bedrock geologic units, their formation name, description and size. Line feature attributes identify, name and describe bedrock contacts, faults and terrane boundaries between these bedrock geologic units. Data is compiled at 1:50,000 scale and is not updated. A complete description of the bedrock mapping units with mineralogical descriptions and a brief history of Connecticut geology are included in the Supplemental Information Section for reference.

    Connecticut Bedrock Geology is a 1:50,000-scale, polygon and line feature-based layer describing the solid material that underlies the soil or other unconsolidated material of the earth for Connecticut. Bedrock geologic formations are described as polygons in terms of formation name (incorporating geologic age), rock type, and tectonic terrane association. Tectonic forces are responsible for the present day geologic configuration of the continents. Resulting terranes are regionally fault bounded rocks of a similar tectonic history. Each terrane is named after its plate tectonics ancestry. Geologic lines include contacts, faults, and terrane boundaries. Terrane boundaries are named for the faults involved. The geologic contacts and faults are delineated and classified by type. Polygon feature attribute information is comprised of codes to identify individual bedrock geologic units, their formation name, description and size. Line feature attributes identify, name and describe bedrock contacts, faults and terrane boundaries between these bedrock geologic units. Data is compiled at 1:50,000 scale and is not updated. A complete description of the bedrock mapping units with mineralogical descriptions and a brief history of Connecticut geology are included in the Supplemental Information Section for reference.

  14. n

    Seismotectonic Map of Afghanistan

    • cmr.earthdata.nasa.gov
    Updated Apr 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Seismotectonic Map of Afghanistan [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2231550172-CEOS_EXTRA.html
    Explore at:
    Dataset updated
    Apr 24, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    A seismotectonic map shows geologic, seismological, and other information that is pertinent to seismic hazards but previously was scattered among many sources. Afghanistan is part of the Eurasian plate. Afghan seismicity is driven by the relative northward movements of the Arabian plate past western Afghanistan at 33 mm/yr and of the Indian plate past eastern Afghanistan at 39 mm/yr or faster as both plates subduct under Eurasia. Afghanistan is laced with faults. Known faults large enough to have been mapped at a scale of 1:500,000 are least abundant in the stable North Afghan platform, more abundant in the accreted terranes of southern Afghanistan, and most likely to slip rapidly and generate earthquakes in eastern and southeastern Afghanistan in the broad transpressional plate boundary with the Indian plate. Crustal earthquakes are most abundant in and around northeastern Afghanistan as a result of the northward subduction of the Indian plate. Crustal earthquakes are somewhat less abundant in much of the transpressional plate boundary with India. Central and western Afghanistan are least seismically active. Beneath the Hindu Kush of northeastern Afghanistan and the Pamirs of adjacent Tajikistan, numerous mantle earthquakes occur within a steeply dipping, northeast-trending, tabular zone that is 700 km long and extends nearly to 300 km depth. Except for the Chaman fault that forms part of the western edge of the transpressional plate boundary in Pakistan and Afghanistan, published evidence for or against the activity of individual Afghan faults is sparse.

    [Summary provided by the USGS.]

  15. a

    Plate tectonics study

    • hub.arcgis.com
    Updated Nov 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Digital-Earth.eu Centres of Excellence (2018). Plate tectonics study [Dataset]. https://hub.arcgis.com/maps/4f78539781594d74a3ff747cfbf2ef29
    Explore at:
    Dataset updated
    Nov 16, 2018
    Dataset authored and provided by
    Digital-Earth.eu Centres of Excellence
    Area covered
    Description

    This map can be used:- to study the motion of the plates- to study phenomena taking place at plate boundaries- to visualize processes taking place.

  16. Z

    Data from: A full-plate global reconstruction of the Neoproterozoic

    • data.niaid.nih.gov
    Updated May 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Merdith, Andrew S.; Collins, Alan S.; Williams, Simon E.; Pisarevsky, Sergei; Foden, John D.; Archibald, Donnelly B.; Blades, Morgan L.; Alessio, Brandon L.; Armistead, Sheree; Plavsa, Diana; Clark, Chris; Müller, R. Dietmar (2024). A full-plate global reconstruction of the Neoproterozoic [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10525928
    Explore at:
    Dataset updated
    May 21, 2024
    Dataset provided by
    The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, WA 6845, Australia
    Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
    EarthByte Group, School of Geosciences, The University of Sydney, Madsen Building F09, Camperdown, NSW 2006, Australia
    Department of Applied Geology, Curtin University, Perth WA 6845, Australia
    Authors
    Merdith, Andrew S.; Collins, Alan S.; Williams, Simon E.; Pisarevsky, Sergei; Foden, John D.; Archibald, Donnelly B.; Blades, Morgan L.; Alessio, Brandon L.; Armistead, Sheree; Plavsa, Diana; Clark, Chris; Müller, R. Dietmar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Neoproterozoic tectonic geography was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana. The Neoproterozoic was a tumultuous time of Earth history, with large climatic variations, the emergence of complex life and a series of continent-building orogenies of a scale not repeated until the Cenozoic. Here we synthesise available geological and palaeomagnetic data and build the first full-plate, topological model of the Neoproterozoic that maps the evolution of the tectonic plate configurations during this time. Topological models trace evolving plate boundaries and facilitate the evaluation of “plate tectonic rules” such as subduction zone migration through time when building plate models. There is a rich history of subduction zone proxies preserved in the Neoproterozoic geological record, providing good evidence for the existence of continent-margin and intra-oceanic subduction zones through time. These are preserved either as volcanic arc protoliths accreted in continent-continent, or continent-arc collisions, or as the detritus of these volcanic arcs preserved in successor basins. Despite this, we find that the model presented here still predicts less subduction (ca. 90%) than on the modern earth, suggesting that we have produced a conservative model and are likely underestimating the amount of subduction, either due to a simplification of tectonically complex areas, or because of the absence of preservation in the geological record (e.g. ocean-ocean convergence). Furthermore, the reconstruction of plate boundary geometries provides constraints for global-scale earth system parameters, such as the role of volcanism or ridge production on the planet's icehouse climatic excursion during the Cryogenian. Besides modelling plate boundaries, our model presents some notable departures from previous Rodinia models. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, such that these two cratons act as ‘lonely wanderers’ for much of the Neoproterozoic. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive margin sediments along its southern margin during the Tonian. The GPlates files of the model are released to the public and it is our expectation that this model can act as a foundation for future model refinements, the testing of alternative models, as well as providing constraints for both geodynamic and palaeoclimate models.

    Digital plate model containing:

    (a) Euler Poles used in reconstruction

    (b) Continental crust polygons used in reconstruction

    (c) Convergence plate boundaries

    (d) Divergent plate boundaries

    (e) Transform plate boundaries

    (f) Plate topologies

    All files are for use in Gplates 2.0 (www.gplates.org)

  17. U

    Folds--Offshore of San Francisco Map Area, California

    • data.usgs.gov
    • search.dataone.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Geological Survey, Folds--Offshore of San Francisco Map Area, California [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:29f1a8a3-11a9-4ddf-8a7d-edafe7733b21
    Explore at:
    Dataset provided by
    United States Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2007 - 2010
    Area covered
    California, San Francisco
    Description

    This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of San Francisco map area, California. The vector data file is included in "Folds_OffshoreSanFrancisco.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. The Offshore of San Francisco map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by Holocene sediments (mostly units Qms, Qmsb, Qmst) with no seafloor expression, and are mapped using seismic-reflection data. The San Andreas Fault is the primary plate-boundary structure and extends northwest across the map area; it intersects the shoreline ...

  18. c

    Bridges Divisions

    • cacgeoportal.com
    Updated Dec 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Atlas – Landscape Content (2021). Bridges Divisions [Dataset]. https://www.cacgeoportal.com/datasets/LandscapeTeam::bridges-divisions-1
    Explore at:
    Dataset updated
    Dec 7, 2021
    Dataset authored and provided by
    Living Atlas – Landscape Content
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Named Landforms of the World version 2 (NLWv2) contains four sub-layers representing geomorphological landforms, provinces, divisions, and their respective cartographic boundaries. The latter supports map making, while the first three represent basic units, such as landforms, which comprise provinces, and provinces comprise divisions. NLW is a substantial update to World Named Landforms in both compilation method and the attributes that describe each landform. For more details, please refer to our paper, Named Landforms of the World: A Geomorphological and Physiographic Compilation, in Annals of the American Association of Geographers. July 2, 2025: We have made Named Landforms of the World v3 (NLWv3) available. Please explore this group containing all of the layers and data. NLWv2 will remain available. Landforms are commonly defined as natural features on the surface of the Earth. The National Geographic Society specifies terrain as the basis for landforms and lists four major types: mountains, hills, plateaus, and plains. Here, however, we define landforms in a richer way that includes properties relating to underlying geologic structure, erosional and depositional character, and tectonic setting and processes. These characteristics were asserted by Dr. Richard E. Murphy in 1968 in his map, titled Landforms of the World. We blended Murphy"s definition for landforms with the work E.M. Bridges, who in his 1990 book, World Geomorphology, provided a globally consistent description of geomorphological divisions, provinces, and sections to give names to the landform regions of the world. AttributeDescriptionBridges Full NameFull name from E.M. Bridges" 1990 "World Geomorphology" Division and if present province and section - intended for labeling print maps of small extents. Bridges DivisionGeomorphological Division as described in E.M. Bridges" 1990 "World Geomorphology" - All Landforms have a division assigned, i.e., no nulls. Bridges ProvinceGeomorphological Province as described in E.M. Bridges" 1990 "World Geomorphology" - Not all divisions are subdivided into provinces. Bridges SectionGeomorphological Section as described in E.M. Bridges" 1990 "World Geomorphology" - Not all provinces are subdivided into sections.StructureLandform Structure as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Alpine Systems: Area of mountains formed by orogenic (collisions of tectonic plates) processes in the past 350 to 500 million years. - Caledonian/Hercynian Shield Remnants: Area of mountains formed by orogenic (collisions of tectonic plates) processes 350 to 500 million years ago. - Gondwana or Laurasian Shields: Area underlaid by mostly crystalline rock formations fromed one billion or more years ago and unbroken by tectonic processes. - Rifted Shield Areas: fractures or spreading along or adjacent to tectonic plate edges. - Isolated Volcanic Areas: volcanic activity occurring outside of Alpine Systems and Rifted Shields. - Sedimentary: Areas of deposition occurring within the past 2.5 million years Moist or DryLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Moist: where annual aridity index is 1.0 or higher, which implies precipitation is absorbed or lost via runoff. - Dry: where annual aridity index is less than 1.0, which implies more precipitation evaporates before it can be absorbed or lost via runoff. TopographicLandform Topographic type variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Karagulle et. al. 2017 - based on rich morphometric characteristics. Coded Value Domain. Values include: - Plains: Areas with less than 90-meters of relief and slopes under 20%. - Hills: Areas with 90- to 300-meters of local relief. - Mountains: Areas with over 300-meters of relief - High Tablelands: Areas with over 300-meters of relief and 50% of highest elevation areas are of gentle slope. - Depressions or Basins: Areas of land surrounded land of higher elevation. Glaciation TypeLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Values include: - Wisconsin/Wurm Glacial Extent: Areas of most recent glaciation which formed 115,000 years ago and ended 11,000 years ago. - Pre-Wisconsin/Wurm Glacial Extent: Areas subjected only to glaciation prior to 140,000 years ago. ContinentAssigned by Author during data compilation. Bridges Short NameThe name of the smallest of Division, Province, or Section containing this landform feature. Murphy Landform CodeCombination of Richard E. Murphy"s 1968 "Landforms of the World" variables expressed as a 3- or 4- letter notation. Used to label medium scale maps. Area_GeoGeodesic area in km2. Primary PlateName of tectonic plate that either completely underlays this landform feature or underlays the largest portion of the landform"s area.Secondary PlateWhen a landform is underlaid by two or more tectonic plates, this is the plate that underlays the second largest area.3rd PlateWhen a landform is underlaid by three or more tectonic plates, this is the plate that underlays the third largest area.4th PlateWhen a landform is underlaid by four or more tectonic plates, this is the plate that underlays the fourth largest area.5th PlateWhen a landform is underlaid by five tectonic plates, this is the plate that underlays the fifth largest area.NotesContains standard text to convey additional tectonic process characteristics. Tectonic ProcessAssigns values of orogenic, rift zone, or above subducting plate. These data are also available as an ArcGIS Pro Map Package: Named_Landforms_of_the_World_v2.0.mpkx.These data supersede the earlier v1.0: World Named Landforms. Change Log:DateDescription of ChangeJuly 20, 2022Corrected spelling of Guiana from incorrect representation, "Guyana", used by Bridges.July 27, 2022Corrected Structure coded value domain value, changing "Caledonian/Hercynian Shield" to "Caledonian , Hercynian, or Appalachian Remnants". Cite as: Frye, C., Sayre R., Pippi, M., Karagulle, Murphy, A., D. Soller, D.R., Gilbert, M., and Richards, J., 2022. Named Landforms of the World. DOI: 10.13140/RG.2.2.33178.93129. Accessed on:

  19. w

    Data from: Faults--Offshore of San Francisco Map Area, California

    • data.wu.ac.at
    • data.usgs.gov
    • +2more
    Updated Dec 12, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2017). Faults--Offshore of San Francisco Map Area, California [Dataset]. https://data.wu.ac.at/schema/data_gov/OGFkMDI4MDUtY2RlZC00YWVhLWE5YTEtNWY3YWZlZGUwYjI2
    Explore at:
    Dataset updated
    Dec 12, 2017
    Dataset provided by
    Department of the Interior
    Area covered
    California, San Francisco, 2bcf2bbe3d755197ff34d48c08df9416cde5a8d7
    Description

    This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore San Francisco map area, California. The vector data file is included in "Faults_OffshoreSanFrancisco.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. The Offshore of San Francisco map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by Holocene sediments (mostly units Qms, Qmsb, Qmst) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-15-10-NC and F-2-07-NC). The San Andreas Fault is the primary plate-boundary structure and extends northwest across the map area; it intersects the shoreline 10 km north of the map area at Bolinas Lagoon, and 3 km south of the map area at Mussel Rock. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers offshore of San Francisco within the map area (Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic to Lower Cretaceous rocks of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops at and north of Point Lobos adjacent to onland exposures. The Franciscan is divided into 13 different units for the onshore portion of this geologic map based on different lithologies and ages, but the unit cannot be similarly divided in the offshore because of a lack of direct observation and (or) sampling. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activities S-15-10-NC and F-2-07-NC). The seismic reflection profiles were collected between 2007 and 2010. References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonophysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/.

  20. w

    Faults--Offshore of Bolinas Map Area, California

    • data.wu.ac.at
    • data.usgs.gov
    • +3more
    Updated Dec 11, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2017). Faults--Offshore of Bolinas Map Area, California [Dataset]. https://data.wu.ac.at/schema/data_gov/MTE3NDcyNjYtMzY4MS00N2IyLWE4YjUtZGQyZDM4MjUxNWRj
    Explore at:
    Dataset updated
    Dec 11, 2017
    Dataset provided by
    Department of the Interior
    Area covered
    Bolinas, California, fc87fc3590c9aefd77886e59036ae7ddc85c7a1e
    Description

    This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Faults_OffshoreBolinas.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. The Offshore of Bolinas map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by sediment (mostly unit Qms) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF). The San Andreas Fault is the primary plate-boundary structure and extends northwest through the southern part of the map area before passing onshore at Bolinas Lagoon. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers south of this map area offshore of San Francisco (e.g., Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic and Lower Cretaceous melange and graywacke sandstone of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops adjacent to the shoreline southeast of Stinson Beach that are commonly continuous with onshore coastal outcrops. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activities S-8-09-NC and L-1-06-SF). The seismic reflection profiles were collected between 2006 and 2009. References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonphysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ArcGIS Living Atlas Team (2020). Tectonic Plates and Boundaries [Dataset]. https://hub.arcgis.com/maps/5113817f8b00453494fd5cf64c099ef9

Tectonic Plates and Boundaries

Explore at:
30 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 5, 2020
Dataset authored and provided by
ArcGIS Living Atlas Team
License

Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically

Area covered
Description

Tectonic plates are pieces of Earth's crust and upper mantle called the lithosphere and are about 100 km thick. There are two main types of plates: oceanic and continental, each composed of different materials. The formation and movement of these plates generates everything from the shape and orientation of continents to the mountains and trenches on Earth. The plates layer shows major and minor plates. Microplates are not included in this map. This version of the tectonic plates and boundaries was derived from Peter Bird in Geochemistry Geophysics Geosystems, 4(3), 1027, [doi:10.1029/2001GC000252]. The full publication can be read here. Processing of the 2014 version of the data into GIS formats was done by Hugo Ahlenius.

Search
Clear search
Close search
Google apps
Main menu