Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Tectonic plates are pieces of Earth's crust and upper mantle called the lithosphere and are about 100 km thick. There are two main types of plates: oceanic and continental, each composed of different materials. The formation and movement of these plates generates everything from the shape and orientation of continents to the mountains and trenches on Earth. The plates layer shows major and minor plates. Microplates are not included in this map. This version of the tectonic plates and boundaries was derived from Peter Bird in Geochemistry Geophysics Geosystems, 4(3), 1027, [doi:10.1029/2001GC000252]. The full publication can be read here. Processing of the 2014 version of the data into GIS formats was done by Hugo Ahlenius.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The global tectonics data compilation is a set of raster and vector data that are useful for investigating tectonics past and present. The datasets are useful on their own or can be used in GIS software, which includes the QGIS project file for convenience. The datasets include our new models for tectonic plate boundaries and deformation zones, geologic provinces and orogens. Additional datasets include earthquake and volcano locations, geochronology, topography, magnetics, gravity, and seismic velocity.
The global tectonics collection is suitable for research and educational purposes.
Facebook
TwitterThe surface of the Earth is broken up into large plates. There are seven major plates: North America, South America, Eurasia, Africa, India, the Pacific, and Antarctica. There are also numerous microplates. The number and shapes of the plates change over geologic time. Plates are divided by boundaries that are seismically active. The different plate boundaries can be described by the type of motion that is occurring between the plates at specific locations. Ocean basins contain spreading ridges where the youngest portions of the seafloor are found. At the spreading ridges magma is released as it pushes up from the mantle and new oceanic crust is formed. At subduction zone boundaries plates are moving toward each other, with one plate subducting or moving beneath the other. When this occurs the crust is pushed into the mantle where it is recycled into magma.Data accessed from here: https://www-udc.ig.utexas.edu/external/plates/data.htm
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The Earth’s lithosphere is made up of a series of plates that float on the mantle. Scientists think the convection of the mantle causes these plates to move triggering earthquakes, volcanoes, mountain-building events, or trench formation. These plates creep along at a rate of approximately five to ten centimeters (two to four inches) per year. These plates move in primarily three main ways. They slide past one another along transform (strike-slip) boundaries, they push against each other at convergent boundaries, or pull away in opposite directions at divergent boundaries. Each one of these interactions create different types of landforms. For example, the steady pressure of the Indian Plate and the Eurasian Plate built the Himalaya mountains and the Plateau of Tibet. The divergent boundary between the African Plate and the Arabian formed the Red Sea.Use this plate map layer to explore how the movement of the plates cause earthquakes, volcanoes, or shape Earth’s landscape.
This map layer features both major and minor plates, but excludes microplates. The data is from the scientific study by Peter Bird published in volume 4, issue 3 of Geochemisty, Geophysics, Geosystems and was translated into geospatial formats by Hugo Ahlenius and updated by Dan Pisut.
Facebook
Twitter117 original plate boundaries from Esri Data and Maps (2007) edited to better match 10 years of earthquakes, land forms and bathymetry from Mapping Our World's WSI_Earth image from module 2. Esri Canada's education layer of plate boundaries and the Smithsonian's ascii file from the download section of the 'This Dynamic Planet' site plate boundaries were used to compare the resulting final plate boundaries for significant differences.
Facebook
TwitterThis layer shows the interpreted surface locations of active plate and microplate boundaries, in and around Te Riu-a-Māui / Zealandia. The layer was newly-compiled for, and is part of, the 'Tectonic map of Te Riu-a-Māui / Zealandia' 1:8 500 000 dataset.
Facebook
TwitterA web application for use in explaining the global distribution of earthquakes and volcanoes and why they are located where they are - specifically designed for use with NCEA Level 1 Geography.Layers that can be turned on in this application:- Tectonic Plate Boundaries- Recent Earthquakes- Archived Earthquakes- Global VolcanoesStudents can export their maps to a PDF or screenshot their maps.You do not have to have an ArcGIS Schools Bundle to access this web application.
Facebook
TwitterA seismotectonic map shows geologic, seismological, and other information that is pertinent to seismic hazards but previously was scattered among many sources. Afghanistan is part of the Eurasian plate. Afghan seismicity is driven by the relative northward movements of the Arabian plate past western Afghanistan at 33 mm/yr and of the Indian plate past eastern Afghanistan at 39 mm/yr or faster as both plates subduct under Eurasia. Afghanistan is laced with faults. Known faults large enough to have been mapped at a scale of 1:500,000 are least abundant in the stable North Afghan platform, more abundant in the accreted terranes of southern Afghanistan, and most likely to slip rapidly and generate earthquakes in eastern and southeastern Afghanistan in the broad transpressional plate boundary with the Indian plate. Crustal earthquakes are most abundant in and around northeastern Afghanistan as a result of the northward subduction of the Indian plate. Crustal earthquakes are somewhat less abundant in much of the transpressional plate boundary with India. Central and western Afghanistan are least seismically active. Beneath the Hindu Kush of northeastern Afghanistan and the Pamirs of adjacent Tajikistan, numerous mantle earthquakes occur within a steeply dipping, northeast-trending, tabular zone that is 700 km long and extends nearly to 300 km depth. Except for the Chaman fault that forms part of the western edge of the transpressional plate boundary in Pakistan and Afghanistan, published evidence for or against the activity of individual Afghan faults is sparse.
[Summary provided by the USGS.]
Facebook
Twitter
Facebook
TwitterThe PALEOMAP project produces paleogreographic maps illustrating the Earth's plate tectonic, paleogeographic, climatic, oceanographic and biogeographic development from the Precambrian to the Modern World and beyond.
A series of digital data sets has been produced consisting of plate tectonic data, climatically sensitive lithofacies, and biogeographic data. Software has been devloped to plot maps using the PALEOMAP plate tectonic model and digital geographic data sets: PGIS/Mac, Plate Tracker for Windows 95, Paleocontinental Mapper and Editor (PCME), Earth System History GIS (ESH-GIS), PaleoGIS(uses ArcView), and PALEOMAPPER.
Teaching materials for educators including atlases, slide sets, VHS animations, JPEG images and CD-ROM digital images.
Some PALEOMAP products include: Plate Tectonic Computer Animation (VHS) illustrating motions of the continents during the last 850 million years.
Paleogeographic Atlas consisting of 20 full color paleogeographic maps. (Scotese, 1997).
Paleogeographic Atlas Slide Set (35mm)
Paleogeographic Digital Images (JPEG, PC/Mac diskettes)
Paleogeographic Digital Image Archive (EPS, PC/Mac Zip disk) consists of the complete digital archive of original digital graphic files used to produce plate tectonic and paleographic maps for the Paleographic Atlas.
GIS software such as PaleoGIS and ESH-GIS.
Facebook
TwitterGlobal plate boundary data from the Homeland Infrastructure Foundation Level database.
Facebook
TwitterThis map depicts one year of global earthquakes and plate boundaries. Click on an earthquake for details about that event. Data is from the USGS Earthquake Catalog.If you have questions about the table, read the documentation from the USGS.
Facebook
TwitterThe data set for the Butler Peak quadrangle has been prepared by the Southern California Areal Mapping Project (SCAMP), a cooperative project sponsored jointly by the U.S. Geological Survey and the California Division of Mines and Geology, as part of an ongoing effort to utilize a Geographical Information System (GIS) format to create a regional digital geologic database for southern California. This regional database is being developed as a contribution to the National Geologic Map Data Base of the National Cooperative Geologic Mapping Program of the USGS. Development of the data set for the Butler Peak quadrangle has also been supported by the U.S. Forest Service, San Bernardino National Forest.
The digital geologic map database for the Butler Peak quadrangle has been created as a general-purpose data set that is applicable to other land-related investigations in the earth and biological sciences. For example, the U.S. Forest Service, San Bernardino National Forest, is using the database as part of a study of an endangered plant species that shows preference for particular rock type environments. The Butler Peak database is not suitable for site-specific geologic evaluations at scales greater than 1:24,000 (1 in = 2,000 ft).
This data set maps and describes the geology of the Butler Peak 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage showing geologic contacts and units,(2) a scanned topographic base at a scale of 1:24,000, and (3) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map on a 1:24,000 topographic base accompanied by a Description of Map Units (DMU), a Correlation of Map Units (CMU), and a key to point and line symbols; (2) PDF files of the DMU and CMU, and of this Readme, and (3) this metadata file.
The geologic map data base contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map was created by transferring lines from the aerial photographs to a 1:24,000 mylar orthophoto-quadrangle and then to a base-stable topographic map. This map was then scribed, and a .007 mil, right-reading, black line clear film made by contact photographic processes.The black line was scanned and auto-vectorized by Optronics Specialty Company, Northridge, CA. The non-attributed scan was imported into ARC/INFO, where the database was built. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Named Landforms of the World version 2 (NLWv2) contains four sub-layers representing geomorphological landforms, provinces, divisions, and their respective cartographic boundaries. The latter supports map making, while the first three represent basic units, such as landforms, which comprise provinces, and provinces comprise divisions. NLW is a substantial update to World Named Landforms in both compilation method and the attributes that describe each landform. For more details, please refer to our paper, Named Landforms of the World: A Geomorphological and Physiographic Compilation, in Annals of the American Association of Geographers. July 2, 2025: We have made Named Landforms of the World v3 (NLWv3) available. Please explore this group containing all of the layers and data. NLWv2 will remain available. Landforms are commonly defined as natural features on the surface of the Earth. The National Geographic Society specifies terrain as the basis for landforms and lists four major types: mountains, hills, plateaus, and plains. Here, however, we define landforms in a richer way that includes properties relating to underlying geologic structure, erosional and depositional character, and tectonic setting and processes. These characteristics were asserted by Dr. Richard E. Murphy in 1968 in his map, titled Landforms of the World. We blended Murphy"s definition for landforms with the work E.M. Bridges, who in his 1990 book, World Geomorphology, provided a globally consistent description of geomorphological divisions, provinces, and sections to give names to the landform regions of the world. AttributeDescriptionBridges Full NameFull name from E.M. Bridges" 1990 "World Geomorphology" Division and if present province and section - intended for labeling print maps of small extents. Bridges DivisionGeomorphological Division as described in E.M. Bridges" 1990 "World Geomorphology" - All Landforms have a division assigned, i.e., no nulls. Bridges ProvinceGeomorphological Province as described in E.M. Bridges" 1990 "World Geomorphology" - Not all divisions are subdivided into provinces. Bridges SectionGeomorphological Section as described in E.M. Bridges" 1990 "World Geomorphology" - Not all provinces are subdivided into sections.StructureLandform Structure as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Alpine Systems: Area of mountains formed by orogenic (collisions of tectonic plates) processes in the past 350 to 500 million years. - Caledonian/Hercynian Shield Remnants: Area of mountains formed by orogenic (collisions of tectonic plates) processes 350 to 500 million years ago. - Gondwana or Laurasian Shields: Area underlaid by mostly crystalline rock formations fromed one billion or more years ago and unbroken by tectonic processes. - Rifted Shield Areas: fractures or spreading along or adjacent to tectonic plate edges. - Isolated Volcanic Areas: volcanic activity occurring outside of Alpine Systems and Rifted Shields. - Sedimentary: Areas of deposition occurring within the past 2.5 million years Moist or DryLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Moist: where annual aridity index is 1.0 or higher, which implies precipitation is absorbed or lost via runoff. - Dry: where annual aridity index is less than 1.0, which implies more precipitation evaporates before it can be absorbed or lost via runoff. TopographicLandform Topographic type variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Karagulle et. al. 2017 - based on rich morphometric characteristics. Coded Value Domain. Values include: - Plains: Areas with less than 90-meters of relief and slopes under 20%. - Hills: Areas with 90- to 300-meters of local relief. - Mountains: Areas with over 300-meters of relief - High Tablelands: Areas with over 300-meters of relief and 50% of highest elevation areas are of gentle slope. - Depressions or Basins: Areas of land surrounded land of higher elevation. Glaciation TypeLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Values include: - Wisconsin/Wurm Glacial Extent: Areas of most recent glaciation which formed 115,000 years ago and ended 11,000 years ago. - Pre-Wisconsin/Wurm Glacial Extent: Areas subjected only to glaciation prior to 140,000 years ago. ContinentAssigned by Author during data compilation. Bridges Short NameThe name of the smallest of Division, Province, or Section containing this landform feature. Murphy Landform CodeCombination of Richard E. Murphy"s 1968 "Landforms of the World" variables expressed as a 3- or 4- letter notation. Used to label medium scale maps. Area_GeoGeodesic area in km2. Primary PlateName of tectonic plate that either completely underlays this landform feature or underlays the largest portion of the landform"s area.Secondary PlateWhen a landform is underlaid by two or more tectonic plates, this is the plate that underlays the second largest area.3rd PlateWhen a landform is underlaid by three or more tectonic plates, this is the plate that underlays the third largest area.4th PlateWhen a landform is underlaid by four or more tectonic plates, this is the plate that underlays the fourth largest area.5th PlateWhen a landform is underlaid by five tectonic plates, this is the plate that underlays the fifth largest area.NotesContains standard text to convey additional tectonic process characteristics. Tectonic ProcessAssigns values of orogenic, rift zone, or above subducting plate. These data are also available as an ArcGIS Pro Map Package: Named_Landforms_of_the_World_v2.0.mpkx.These data supersede the earlier v1.0: World Named Landforms. Change Log:DateDescription of ChangeJuly 20, 2022Corrected spelling of Guiana from incorrect representation, "Guyana", used by Bridges.July 27, 2022Corrected Structure coded value domain value, changing "Caledonian/Hercynian Shield" to "Caledonian , Hercynian, or Appalachian Remnants". Cite as: Frye, C., Sayre R., Pippi, M., Karagulle, Murphy, A., D. Soller, D.R., Gilbert, M., and Richards, J., 2022. Named Landforms of the World. DOI: 10.13140/RG.2.2.33178.93129. Accessed on:
Facebook
TwitterNCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps.
This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu
Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications.
Maps are best when viewed with RED/CYAN anaglyph glasses!
A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.
World Map: 3-D map that highlights oceanic bathymetry and plate boundaries.
Continental United States: 3-D grayscale map of the Lower 48.
Western United States: 3-D grayscale map of the Western United States with state boundaries.
Regional Map: 3-D greyscale map stretching from Hudson Bay to the Central Great Plains. This map includes the Western Great Lakes and the Canadian Shield.
Minnesota Map: 3-D greyscale map of Minnesota with county and state boundaries.
Twin Cities: 3-D map extending beyond Minneapolis and St. Paul.
Twin Cities Confluence Map: 3-D map highlighting the confluence of the Mississippi and Minnesota Rivers. This map includes most of Minneapolis and St. Paul.
Minneapolis, MN: 3-D topographical map of South Minneapolis.
Bassets Creek, Minneapolis: 3-D topographical map of the Bassets Creek watershed.
North Minneapolis: 3-D topographical map highlighting North Minneapolis and the Mississippi River.
St. Paul, MN: 3-D topographical map of St. Paul.
Western Suburbs, Twin Cities: 3-D topographical map of St. Louis Park, Hopkins and Minnetonka area.
Minnesota River Valley Suburbs, Twin Cities: 3-D topographical map of Bloomington, Eden Prairie and Edina area.
Southern Suburbs, Twin Cities: 3-D topographical map of Burnsville, Lakeville and Prior Lake area.
Southeast Suburbs, Twin Cities: 3-D topographical map of South St. Paul, Mendota Heights, Apple Valley and Eagan area.
Northeast Suburbs, Twin Cities: 3-D topographical map of White Bear Lake, Maplewood and Roseville area.
Northwest Suburbs, Mississippi River, Twin Cities: 3-D topographical map of North Minneapolis, Brooklyn Center and Maple Grove area.
Blaine, MN: 3-D map of Blaine and the Mississippi River.
White Bear Lake, MN: 3-D topographical map of White Bear Lake and the surrounding area.
Maple Grove, MN: 3-D topographical mmap of the NW suburbs of the Twin Cities.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of San Francisco map area, California. The vector data file is included in "Folds_OffshoreSanFrancisco.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. The Offshore of San Francisco map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by Holocene sediments (mostly units Qms, Qmsb, Qmst) with no seafloor expression, and are mapped using seismic-reflection data. The San Andreas Fault is the primary plate-boundary structure and extends northwest across the map area; it intersects the shoreline ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 'Major crustal boundaries of Australia' map synthesizes more than 30 years of acquisition of deep seismic reflection data across Australia, where major crustal-scale breaks have been interpreted in the seismic reflection profiles, often inferred to be relict sutures between different crustal blocks. The widespread coverage of the seismic profiles now provides the opportunity to construct a map of major crustal boundaries across Australia. Starting with the locations of the crustal breaks identified in the seismic profiles, geological (e.g. outcrop mapping, drill hole, geochronology, isotope) and geophysical (e.g. gravity, aeromagnetic, magnetotelluric) data are used to map the crustal boundaries, in map view, away from the seismic profiles. For some of these boundaries, a high level of confidence can be placed on the location, whereas the location of other boundaries can only be considered to have medium or low confidence. In other areas, especially in regions covered by thick sedimentary successions, the locations of some crustal boundaries are essentially unconstrained. The 'Major crustal boundaries of Australia' map shows the locations of inferred ancient plate boundaries, and will provide constraints on the three dimensional architecture of Australia. It allows a better understanding of how the Australian continent was constructed from the Mesoarchean through to the Phanerozoic, and how this evolution and these boundaries have controlled metallogenesis. It is best viewed as a dynamic dataset, which will have to be further refined and updated as new information such as seismic reflection data becomes available.
Facebook
TwitterThe USGS presents an updated model of the Juan de Fuca slab beneath southern British Columbia, Washington, Oregon, and northern California, and use this model to separate earthquakes occurring above and below the slab surface. The model is based on depth contours previously published by Flück and others (1997). Our model attempts to rectify a number of shortcomings in the original model and to update it with new work. The most significant improvements include (1) a gridded slab surface in geo-referenced (ArcGIS) format, (2) continuation of the slab surface to its full northern and southern edges, (3) extension of the slab surface from 50-km depth down to 110-km beneath the Cascade arc volcanoes, and (4) revision of the slab shape based on new seismic-reflection and seismic-refraction studies. We have used this surface to sort earthquakes and present some general observations and interpretations of seismicity patterns revealed by our analysis. In addition, we provide files of earthquakes above and below the slab surface and a 3-D animation or fly-through showing a shaded-relief map with plate boundaries, the slab surface, and hypocenters for use as a visualization tool.
[Summary provided by the USGS.]
Facebook
TwitterThe Long Valley Caldera GIS Database provides an overview of the studies being conducted by the Long Valley Observatory in eastern California from 1975 to 2001. The database includes geologic, monitoring, and topographic datasets related to Long Valley caldera. The CD-ROM contains a scan of the original geologic map of the Long Valley region by R. Bailey. Real-time data of the current activity of the caldera (including earthquakes, ground deformation and the release of volcanic gas), information about volcanic hazards and the USGS response plan are available online at the Long Valley observatory web page (http://lvo.wr.usgs.gov). If you have any comments or questions about this database, please contact the Scientist in Charge of the Long Valley observatory.
[Summary provided by the USGS.]
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SAR4Tectonics project aims to provide open-access, global measurements of ground deformation in high-strain areas near tectonic plate boundaries. By leveraging the capabilities of the Persistent and Distributed Scatterer (PS/DS) technique with Sentinel-1 SAR images, the project seeks to deliver comprehensive and accurate data on ground deformation, which is crucial for understanding geological processes, assessing seismic risks in these regions, and advance our understanding of Earth's dynamic processes in general. The PS/DS technique offers significantly denser spatial coverage than GNSS, enabling the detection of more localized deformation signals. For the first time, such a vast and detailed dataset is made publicly available. By making this data openly accessible, the SAR4Tectonics project hopes to reduce the burden of SAR data processing for geoscientists, facilitating future studies.The project involved processing 6.5 years of SAR data, focusing on areas where the second invariant of strain exceeds 3 nanostrain per year. Various error corrections were employed, including tropospheric delay correction using ECMWF reanalysis data, ionospheric mitigation via CODE total electron content maps, and solid earth tide modeling. Additionally, the impact of vegetation and soil moisture on distributed scatterers was minimized through a full covariance matrix (phase linking) approach, and the results were calibrated using GNSS data. The final dataset includes line-of-sight average velocity maps, deformation time series, projection vectors, and reference plate modeled velocities.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Tectonic plates are pieces of Earth's crust and upper mantle called the lithosphere and are about 100 km thick. There are two main types of plates: oceanic and continental, each composed of different materials. The formation and movement of these plates generates everything from the shape and orientation of continents to the mountains and trenches on Earth. The plates layer shows major and minor plates. Microplates are not included in this map. This version of the tectonic plates and boundaries was derived from Peter Bird in Geochemistry Geophysics Geosystems, 4(3), 1027, [doi:10.1029/2001GC000252]. The full publication can be read here. Processing of the 2014 version of the data into GIS formats was done by Hugo Ahlenius.