39 datasets found
  1. b

    App Store Data (2025)

    • businessofapps.com
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). App Store Data (2025) [Dataset]. https://www.businessofapps.com/data/app-stores/
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...

  2. b

    Google Play Store Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Google Play Store Datasets [Dataset]. https://brightdata.com/products/datasets/google-play-store
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.

  3. d

    Google Play Store Apps / Games Data, Android Apps Data, Consumer Review...

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja, Google Play Store Apps / Games Data, Android Apps Data, Consumer Review Data, Top Charts | Real-Time API [Dataset]. https://datarade.ai/data-products/openweb-ninja-google-play-store-data-android-apps-games-openweb-ninja
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    Korea (Republic of), Finland, Azerbaijan, Mali, Netherlands, Nicaragua, Bermuda, Christmas Island, Guam, Macedonia (the former Yugoslav Republic of)
    Description

    Use the OpenWeb Ninja Google Play App Store Data API to access comprehensive data on Google Play Store, including Android Apps / Games, reviews, top charts, search, and more. Our extensive dataset provides over 40 app store data points, enabling you to gain deep insights into the market.

    The App Store Data dataset includes all key app details:

    App Name, Description, Rating, Photos, Downloads, Version Information, App Size, Permissions, Developer and Contact Information, Consumer Review Data.

  4. 📱 Google Play App Reviews Dataset 📊

    • kaggle.com
    Updated Jan 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hassaan Mustafavi (2025). 📱 Google Play App Reviews Dataset 📊 [Dataset]. https://www.kaggle.com/datasets/hassaanmustafavi/google-play-app-reviews-dataset/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 26, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hassaan Mustafavi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Don't forget to hit the upvote🙏🙏

    🔖 Overview

    The Google Play App Reviews dataset contains valuable feedback from users who have reviewed apps on the Google Play Store. This dataset includes both user ratings and detailed comments, making it ideal for sentiment analysis, user experience evaluation, and app performance research.

    📚 Columns Description

    Column NameDescription
    review_idUnique identifier for each review. 🆔
    user_nameName of the user who submitted the review. 👤
    review_titleTitle of the review (may be empty in some cases). 📝
    review_descriptionThe content or feedback given by the user about the app. 💬
    ratingRating given by the user, ranging from 1 (low) to 5 (high). ⭐
    thumbs_upNumber of thumbs up the review received. 👍
    review_dateDate and time the review was submitted. 📅
    developer_responseResponse from the app developer (if provided). 💬👨‍💻
    developer_response_dateDate when the developer responded to the review. 📅💻
    appVersionThe version of the app when the review was submitted. 📱🔢
    language_codeThe language in which the review was written (e.g., 'en' for English). 🗣️
    country_codeThe country of the user based on their review (e.g., 'us' for United States). 🌍

    📊 Key Features

    • Rich Feedback: Includes both ratings and textual feedback from users.
    • 🌍 Global Reach: Reviews are collected from users worldwide, providing diverse insights.
    • 🔒 Anonymized Data: No personally identifiable information is included.
    • ⚙️ Ready for Analysis: Cleaned and pre-processed for immediate use in sentiment analysis and app performance evaluation.

    🎯 Potential Use Cases

    • Sentiment Analysis: Analyze user sentiment based on reviews and ratings.
    • Customer Feedback: Measure user satisfaction and discover areas for improvement.
    • App Version Comparison: Evaluate how different versions of the app perform based on user feedback.
    • Geographic Insights: Analyze regional differences in app usage and reviews.
    • Developer Interaction: Assess the effectiveness of developer responses to user reviews.

    🚀 Get Started!

    Ready to dive into the world of app feedback and sentiment analysis? Explore the dataset, build models to understand user sentiments, and enhance app experiences based on real feedback.

    Happy coding! ✨

  5. Google Play Store Apps

    • kaggle.com
    zip
    Updated Feb 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lavanya (2019). Google Play Store Apps [Dataset]. https://www.kaggle.com/lava18/google-play-store-apps
    Explore at:
    zip(2037893 bytes)Available download formats
    Dataset updated
    Feb 3, 2019
    Authors
    Lavanya
    Description

    Context

    While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.

    Content

    Each app (row) has values for catergory, rating, size, and more.

    Acknowledgements

    This information is scraped from the Google Play Store. This app information would not be available without it.

    Inspiration

    The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!

  6. e

    The manifest and store data of 870,515 Android mobile applications - Dataset...

    • b2find.eudat.eu
    Updated Oct 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). The manifest and store data of 870,515 Android mobile applications - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/b25ee20e-5268-50ae-9914-4bc70bd4ff1c
    Explore at:
    Dataset updated
    Oct 23, 2023
    Description

    We built a crawler to collect data from the Google Play store including the application's metadata and APK files. The manifest files were extracted from the APK files and then processed to extract the features. The data set is composed of 870,515 records/apps, and for each app we produced 48 features. The data set was used to built and test two bootstrap aggregating of multiple XGBoost machine learning classifiers. The dataset were collected between April 2017 and November 2018. We then checked the status of these applications on three different occasions; December 2018, February 2019, and May-June 2019.

  7. Google Play Store Reviews Database

    • crawlfeeds.com
    csv, zip
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2024). Google Play Store Reviews Database [Dataset]. https://crawlfeeds.com/datasets/google-play-store-reviews-database
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Explore the Google Play Store Reviews Database, a comprehensive collection of user reviews for various apps available on the Google Play Store.

    This dataset includes millions of reviews across a wide range of categories such as games, productivity, social media, finance, health, and more. Each review entry provides essential details, including app names, user ratings, review texts, review dates, and user feedback, offering valuable insights for developers, data analysts, and market researchers.

    Key Features:

    • Extensive Review Coverage: Contains millions of user reviews from the Google Play Store, covering various app categories like games, productivity, social media, finance, and health.
    • Detailed Review Information: Each review includes key details such as app name, user rating, review text, review date, and user feedback, allowing for in-depth analysis of user sentiment and app performance.
    • Ideal for Market Analysis: Perfect for developers, data scientists, and market researchers interested in analyzing user feedback, studying trends in app usage, or optimizing app development strategies based on user reviews.
    • Rich Source of User Insights: Provides a comprehensive overview of user experiences and preferences, helping professionals stay updated on the latest trends, popular apps, and user satisfaction levels.

    Whether you're analyzing user feedback, researching market trends, or developing new app strategies, the Google Play Store Reviews Database is an invaluable resource that provides detailed insights and extensive coverage of app reviews on the Google Play Store.

  8. Z

    Dataset used for "A Recommender System of Buggy App Checkers for App Store...

    • data.niaid.nih.gov
    Updated Jun 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Monperrus (2021). Dataset used for "A Recommender System of Buggy App Checkers for App Store Moderators" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5034291
    Explore at:
    Dataset updated
    Jun 28, 2021
    Dataset provided by
    Maria Gomez
    Lionel Seinturier
    Romain Rouvoy
    Martin Monperrus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset used for paper: "A Recommender System of Buggy App Checkers for App Store Moderators", published on the International Conference on Mobile Software Engineering and Systems (MOBILESoft) in 2015.

    Dataset Collection We built a dataset that consists of a random sample of Android app metadata and user reviews available on the Google Play Store on January and March 2014. Since the Google Play Store is continuously evolving (adding, removing and/or updating apps), we updated the dataset twice. The dataset D1 contains available apps in the Google Play Store in January 2014. Then, we created a new snapshot (D2) of the Google Play Store in March 2014.

    The apps belong to the 27 different categories defined by Google (at the time of writing the paper), and the 4 predefined subcategories (free, paid, new_free, and new_paid). For each category-subcategory pair (e.g. tools-free, tools-paid, sports-new_free, etc.), we collected a maximum of 500 samples, resulting in a median number of 1.978 apps per category.

    For each app, we retrieved the following metadata: name, package, creator, version code, version name, number of downloads, size, upload date, star rating, star counting, and the set of permission requests.

    In addition, for each app, we collected up to a maximum of the latest 500 reviews posted by users in the Google Play Store. For each review, we retrieved its metadata: title, description, device, and version of the app. None of these fields were mandatory, thus several reviews lack some of these details. From all the reviews attached to an app, we only considered the reviews associated with the latest version of the app —i.e., we discarded unversioned and old-versioned reviews. Thus, resulting in a corpus of 1,402,717 reviews (2014 Jan.).

    Dataset Stats Some stats about the datasets:

    • D1 (Jan. 2014) contains 38,781 apps requesting 7,826 different permissions, and 1,402,717 user reviews.

    • D2 (Mar. 2014) contains 46,644 apps and 9,319 different permission requests, and 1,361,319 user reviews.

    Additional stats about the datasets are available here.

    Dataset Description To store the dataset, we created a graph database with Neo4j. This dataset therefore consists of a graph describing the apps as nodes and edges. We chose a graph database because the graph visualization helps to identify connections among data (e.g., clusters of apps sharing similar sets of permission requests).

    In particular, our dataset graph contains six types of nodes: - APP nodes containing metadata of each app, - PERMISSION nodes describing permission types, - CATEGORY nodes describing app categories, - SUBCATEGORY nodes describing app subcategories, - USER_REVIEW nodes storing user reviews. - TOPIC topics mined from user reviews (using LDA).

    Furthermore, there are five types of relationships between APP nodes and each of the remaining nodes:

    • USES_PERMISSION relationships between APP and PERMISSION nodes
    • HAS_REVIEW between APP and USER_REVIEW nodes
    • HAS_TOPIC between USER_REVIEW and TOPIC nodes
    • BELONGS_TO_CATEGORY between APP and CATEGORY nodes
    • BELONGS_TO_SUBCATEGORY between APP and SUBCATEGORY nodes

    Dataset Files Info

    Neo4j 2.0 Databases

    googlePlayDB1-Jan2014_neo4j_2_0.rar

    googlePlayDB2-Mar2014_neo4j_2_0.rar We provide two Neo4j databases containing the 2 snapshots of the Google Play Store (January and March 2014). These are the original databases created for the paper. The databases were created with Neo4j 2.0. In particular with the tool version 'Neo4j 2.0.0-M06 Community Edition' (latest version available at the time of implementing the paper in 2014).

    Neo4j 3.5 Databases

    googlePlayDB1-Jan2014_neo4j_3_5_28.rar

    googlePlayDB2-Mar2014_neo4j_3_5_28.rar Currently, the version Neo4j 2.0 is deprecated and it is not available for download in the official Neo4j Download Center. We have migrated the original databases (Neo4j 2.0) to Neo4j 3.5.28. The databases can be opened with the tool version: 'Neo4j Community Edition 3.5.28'. The tool can be downloaded from the official Neo4j Donwload page.

      In order to open the databases with more recent versions of Neo4j, the databases must be first migrated to the corresponding version. Instructions about the migration process can be found in the Neo4j Migration Guide.
    
      First time the Neo4j database is connected, it could request credentials. The username and pasword are: neo4j/neo4j
    
  9. Google-Play-App-Rating-Analysis

    • kaggle.com
    zip
    Updated Dec 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moin Uddin Maruf (2020). Google-Play-App-Rating-Analysis [Dataset]. https://www.kaggle.com/moinuddinmaruf/google-play-app-rating-analysis
    Explore at:
    zip(318126 bytes)Available download formats
    Dataset updated
    Dec 24, 2020
    Authors
    Moin Uddin Maruf
    Description

    This dataset contains some stats about google play store app.

    There's a story behind every dataset and here's your opportunity to share yours. Based on installs, reviews you can sort out the apps. A clear picture can be drawn of apps, you can find out apps of what category are the most expensive, most popular, have most installs. Also various comparison can be done based on the data given in the dataset.

  10. Google Playstore App Data

    • dataandsons.com
    csv, zip
    Updated Jul 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gautham Prakash (2020). Google Playstore App Data [Dataset]. https://www.dataandsons.com/categories/markets/google-playstore-app-data
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 28, 2020
    Dataset provided by
    Authors
    Gautham Prakash
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    About this Dataset

    Google Playstore App data of 600K+ applications with all public details. Last updated on July 2020.

    Category

    Markets

    Keywords

    Mobile Application,App Store

    Row Count

    603047

    Price

    $399.00

  11. New Google Play Store - Android Apps dataset

    • kaggle.com
    Updated Aug 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tung M Phung (2020). New Google Play Store - Android Apps dataset [Dataset]. https://www.kaggle.com/tungmphung/new-google-play-store-android-apps-dataset/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 25, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tung M Phung
    Description

    Context

    To date (April 2020), Android is still the most popular mobile operating system in the world. Taking into account billion of Android users worldwide, mining this data has the potential to reveal user behaviors and trends in the whole global scope.

    Content

    There are 2 CSV files: - app.csv with 53,732 rows and 18 columns. - comment.csv with 1,468,173 rows and 4 columns.

    The scraping was done in April 2020.

    Acknowledgements

    This dataset is obtained from scraping Google Play Store. Without Google and Android, this dataset wouldn’t have existed.

    The dataset is first published in this blog.

    Inspiration

    Business trends on mobile can be explored by examining this dataset.

  12. h

    messengers-reviews-google-play

    • huggingface.co
    Updated Sep 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unique Data (2023). messengers-reviews-google-play [Dataset]. https://huggingface.co/datasets/UniqueData/messengers-reviews-google-play
    Explore at:
    Dataset updated
    Sep 19, 2023
    Authors
    Unique Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Reviews on Messengers Dataset - Review dataset

    The Reviews on Messengers Dataset is a comprehensive collection of 200 the most recent customer reviews on 6 messengers obtained from the popular app store, Google Play. See the list of the apps below. This dataset encompasses reviews written in 5 different languages: English, French, German, Italian, Japanese.

      💴 For Commercial Usage: To discuss your requirements, learn about the price and buy the dataset, leave a request… See the full description on the dataset page: https://huggingface.co/datasets/UniqueData/messengers-reviews-google-play.
    
  13. Z

    Automated Insights Dataset (AID) and User Interface Depth Dataset (UID)

    • data.niaid.nih.gov
    • zenodo.org
    Updated Mar 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kuspil, Jonathan Cesar (2024). Automated Insights Dataset (AID) and User Interface Depth Dataset (UID) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10676844
    Explore at:
    Dataset updated
    Mar 19, 2024
    Dataset provided by
    Ribeiro, João Vitor Souza
    Kuspil, Jonathan Cesar
    Leal, Gislaine Camila Lapasini
    Balancieri, Renato
    Guerino, Guilherme Corredato
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Automated Insights Dataset (AID) brings metadata from the 200 most downloaded free apps from each of the 32 categories on the Google Play Store, totaling 6400 apps, with information that goes beyond that presented by app stores, also bringing metadata from AppBrain. The User Interface Depth Dataset (UID) brings a high-quality sampling of the AID, and delves into the identification of 7540 components of 50 component types and the capture of 1948 screenshots of the interface of 400 apps. The component set was based on components of Google Material Design and Android Studio.

    The datasets can be viewed in the spreadsheets named "Automated Insights Dataset (AID).xlsx" and "User Interface Depth Dataset (UID).xlsx".

    The "UID - Screenshots.zip" file contains screenshots of the apps present in the UID, organized in folders by app IDs.

    The "Source code of the developed tools.zip" file contains Python codes and complementary files used to collect the datasets.

    The "Discarded apps.zip" file contains the apps discarded in the analysis, it presents screenshots of some apps, collected elements and the reasons that led to these apps being discarded.

    The "Data explanation.zip" file contains graphical representations of the UID components and textual representations of each data present in the UID and AID, allowing a better understanding of the criteria used.

  14. Table_1_An Overview of Commercially Available Apps in the Initial Months of...

    • frontiersin.figshare.com
    • figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melvyn W. B. Zhang; Aloysius Chow; Roger C. M. Ho; Helen E. Smith (2023). Table_1_An Overview of Commercially Available Apps in the Initial Months of the COVID-19 Pandemic.XLSX [Dataset]. http://doi.org/10.3389/fpsyt.2021.557299.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Melvyn W. B. Zhang; Aloysius Chow; Roger C. M. Ho; Helen E. Smith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction: It has been 4 months since the discovery of COVID-19, and there have been many measures introduced to curb movements of individuals to stem the spread. There has been an increase in the utilization of web-based technologies for counseling, and for supervision and training, and this has been carefully described in China. Several telehealth initiatives have been highlighted for Australian residents. Smartphone applications have previously been shown to be helpful in times of a crisis. Whilst there have been some examples of how web-based technologies have been used to support individuals who are concerned about or living with COVID-19, we know of no studies or review that have specifically looked at how M-Health technologies have been utilized for COVID-19.Objectives: There might be existing commercially available applications on the commercial stores, or in the published literature. There remains a lack of understanding of the resources that are available, the functionality of these applications, and the evidence base of these applications. Given this, the objective of this content analytical review is in identifying the commercial applications that are available currently for COVID-19, and in exploring their functionalities.Methods: A mobile application search application was used. The search terminologies used were “COVID” and “COVID-19.” Keyword search was performed based on the titles of the commercial applications. The search through the database was conducted from the 27th March through to the 18th of April 2020 by two independent authors.Results: A total of 103 applications were identified from the Apple iTunes and Google Play store, respectively; 32 were available on both Apple and Google Play stores. The majority appeared on the commercial stores between March and April 2020, more than 2 months after the first discovery of COVID-19. Some of the common functionalities include the provision of news and information, contact tracking, and self-assessment or diagnosis.Conclusions: This is the first review that has characterized the smartphone applications 4 months after the first discovery of COVID-19.

  15. Playstore Analysis

    • kaggle.com
    Updated Jul 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Madhav000 (2020). Playstore Analysis [Dataset]. https://www.kaggle.com/madhav000/playstore-analysis/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 2, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Madhav000
    Description

    Google Play Store team had launched a new feature wherein, certain apps that are promising, are boosted in visibility. The boost will manifest in multiple ways including higher priority in recommendations sections (“Similar apps”, “You might also like”, “New and updated games”). These will also get a boost in search results visibility. This feature will help bring more attention to newer apps that have the potential.

    Analysis to be done:

    The problem is to identify the apps that are going to be good for Google to promote. App ratings, which are provided by the customers, is always a great indicator of the goodness of the app. The problem reduces to: predict which apps will have high ratings.

    Problem Statement:

    Google Play Store team is about to launch a new feature wherein, certain apps that are promising, are boosted in visibility. The boost will manifest in multiple ways including higher priority in recommendations sections (“Similar apps”, “You might also like”, “New and updated games”). These will also get a boost in search results visibility. This feature will help bring more attention to newer apps that have the potential.

    Content:

    Dataset: Google Play Store data (“googleplaystore.csv”)

    Fields in the data: App: Application name Category: Category to which the app belongs Rating: Overall user rating of the app Reviews: Number of user reviews for the app Size: Size of the app Installs: Number of user downloads/installs for the app Type: Paid or Free Price: Price of the app Content Rating: Age group the app is targeted at - Children / Mature 21+ / Adult Genres: An app can belong to multiple genres (apart from its main category). For example, a musical family game will belong to Music, Game, Family genres. Last Updated: Date when the app was last updated on Play Store Current Ver: Current version of the app available on Play Store Android Ver: Minimum required Android version

  16. h

    GoogleDataSafety

    • huggingface.co
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wisconsin Privacy and Security Group (2024). GoogleDataSafety [Dataset]. https://huggingface.co/datasets/WIPI/GoogleDataSafety
    Explore at:
    Dataset updated
    Nov 22, 2024
    Authors
    Wisconsin Privacy and Security Group
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    GoogleDataSafety

    Data used in the papers:

    Unpacking Privacy Labels: A Measurement and Developer Perspective on Google's Data Safety Section The Overview of Privacy Labels and their Compatibility with Privacy Policies Comparing Privacy Labels of Applications in Android and iOS

      Getting Started
    

    In this dataset you have the following data:

    App Privacy Policies Data Safety Sections Labels

    The data is collected from the apps in Google Play Store over the period of… See the full description on the dataset page: https://huggingface.co/datasets/WIPI/GoogleDataSafety.

  17. Dataset: Gold standard dataset for explainability need detection in app...

    • zenodo.org
    zip
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Obaidi; Martin Obaidi (2025). Dataset: Gold standard dataset for explainability need detection in app reviews. [Dataset]. http://doi.org/10.5281/zenodo.13273192
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Martin Obaidi; Martin Obaidi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We crawled 90,000 app reviews from both Google Play Store and Apple App Store, including reviews from both free and paid apps. These reviews were filtered for explainability needs, and after this process, 4,495 reviews remained. Among them, 2,185 reviews indicated an explanation need, while 2,310 did not. This resulting gold standard dataset was used to train and evaluate several machine learning models and rule-based approaches for detecting explanation needs in app reviews.

    The dataset includes both balanced and unbalanced evaluation sets, as well as the original crawled data from October 2023. In addition to machine learning approaches, rule-based methods optimized for F1 score, precision, and recall are also included.

    We provide several pre-trained machine learning models (including BERT, SetFit, AdaBoost, K-Nearest Neighbor, Logistic Regression, Naive Bayes, Random Forest, and SVM) along with training scripts and evaluation notebooks. These models can be applied directly or retrained using the included datasets.

    For further details on the structure and usage of the dataset, please refer to the README.md file within the provided ZIP archive.

  18. Google Play Store Data

    • zenodo.org
    bin, csv
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhishek Kaushik; Abhishek Kaushik; Swathi Venkatakrishnan; Swathi Venkatakrishnan (2020). Google Play Store Data [Dataset]. http://doi.org/10.5281/zenodo.2839188
    Explore at:
    bin, csvAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Abhishek Kaushik; Abhishek Kaushik; Swathi Venkatakrishnan; Swathi Venkatakrishnan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mobile App Stores such as Google, Apple have wide range of applications to suffice every need of customers in the digital platform. Customer feedback and ratings has always been one of the major metrics that can be used to review the performance and accordingly provide suitable recommendations to enhance the functionality. The Given dataset contain the feedback of the customer regarding the app used in app store.

    Data Set Column Details are as given below:

    Column name:

    Description:

    Column Name in Working Sheet

    Datatype

    Please read the Readme.docs file

  19. g

    Usage metrics of the TousAntiCovid application

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Usage metrics of the TousAntiCovid application [Dataset]. https://gimi9.com/dataset/eu_5fa93b994b29f6390f150980_1
    Explore at:
    Description

    The TousAntiCovid app TousAntiCovid is an application that allows everyone to be an actor in the fight against the epidemic. This is an additional barrier gesture that is activated at all times when you have to redouble your vigilance: at the restaurant, in the canteen, when you go to a gym, when you participate in a professional event, when there is a risk that not everyone will respect the other barrier gestures. TousAntiCovid complements the action of doctors and sickness insurance, aimed at containing the spread of the virus by stopping the chains of contamination as soon as possible. The principle is as follows: prevent, while guaranteeing anonymity, people who have been close to a person tested positive, so that they can get tested and taken care of as soon as possible. It also makes it possible to stay informed about the evolution of the epidemic and the conduct to be held and thus to remain vigilant and adopt the right actions. It allows easy access to other tools available to citizens wishing to be involved in the fight against the epidemic: DepistageCovid which gives map of nearby labs and wait times and MesConseilsCovid which provides personalised advice to protect and protect others. The installation of the TousAntiCovid app is done on a voluntary basis. Everyone is supported even if they choose not to use the app. The app is downloaded from the Apple Store and Google Play: Hello.tousanticovid.gouv.fr/ ### Description of the data This dataset informs for each day since the launch of the application on 2 June 2020: — Cumulative total of the number of registered applications minus the number of deregistrations. — Cumulative total of users notified by the application: the number of users notified by the application as risk contacts following exposure to COVID-19, since 2 June 2020. — Cumulative total of users reporting as COVID-19 cases per day: the number of users who reported as COVID-19 cases in the application, since 2 June 2020.

  20. f

    Data_Sheet_1_mHealth Solutions for Mental Health Screening and Diagnosis: A...

    • frontiersin.figshare.com
    • figshare.com
    docx
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erin Lucy Funnell; Benedetta Spadaro; Nayra Martin-Key; Tim Metcalfe; Sabine Bahn (2023). Data_Sheet_1_mHealth Solutions for Mental Health Screening and Diagnosis: A Review of App User Perspectives Using Sentiment and Thematic Analysis.docx [Dataset]. http://doi.org/10.3389/fpsyt.2022.857304.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Erin Lucy Funnell; Benedetta Spadaro; Nayra Martin-Key; Tim Metcalfe; Sabine Bahn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mental health screening and diagnostic apps can provide an opportunity to reduce strain on mental health services, improve patient well-being, and increase access for underrepresented groups. Despite promise of their acceptability, many mental health apps on the market suffer from high dropout due to a multitude of issues. Understanding user opinions of currently available mental health apps beyond star ratings can provide knowledge which can inform the development of future mental health apps. This study aimed to conduct a review of current apps which offer screening and/or aid diagnosis of mental health conditions on the Apple app store (iOS), Google Play app store (Android), and using the m-health Index and Navigation Database (MIND). In addition, the study aimed to evaluate user experiences of the apps, identify common app features and determine which features are associated with app use discontinuation. The Apple app store, Google Play app store, and MIND were searched. User reviews and associated metadata were then extracted to perform a sentiment and thematic analysis. The final sample included 92 apps. 45.65% (n = 42) of these apps only screened for or diagnosed a single mental health condition and the most commonly assessed mental health condition was depression (38.04%, n = 35). 73.91% (n = 68) of the apps offered additional in-app features to the mental health assessment (e.g., mood tracking). The average user rating for the included apps was 3.70 (SD = 1.63) and just under two-thirds had a rating of four stars or above (65.09%, n = 442). Sentiment analysis revealed that 65.24%, n = 441 of the reviews had a positive sentiment. Ten themes were identified in the thematic analysis, with the most frequently occurring being performance (41.32%, n = 231) and functionality (39.18%, n = 219). In reviews which commented on app use discontinuation, functionality and accessibility in combination were the most frequent barriers to sustained app use (25.33%, n = 19). Despite the majority of user reviews demonstrating a positive sentiment, there are several areas of improvement to be addressed. User reviews can reveal ways to increase performance and functionality. App user reviews are a valuable resource for the development and future improvements of apps designed for mental health diagnosis and screening.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Business of Apps (2025). App Store Data (2025) [Dataset]. https://www.businessofapps.com/data/app-stores/

App Store Data (2025)

Explore at:
32 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 1, 2025
Dataset authored and provided by
Business of Apps
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...

Search
Clear search
Close search
Google apps
Main menu