Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mangroves are dominant flora of intertidal zones along tropical and subtropical coastline around the world that offer important ecological and economic value. Recently, the genomes of mangroves have been decoded, and massive omics data were generated and deposited in the public databases. Reanalysis of multi-omics data can provide new biological insights excluded in the original studies. However, the requirements for computational resource and lack of bioinformatics skill for experimental researchers limit the effective use of the original data. To fill this gap, we uniformly processed 942 transcriptome data, 386 whole-genome sequencing data, and provided 13 reference genomes and 40 reference transcriptomes for 53 mangroves. Finally, we built an interactive web-based database platform MangroveDB (https://github.com/Jasonxu0109/MangroveDB), which was designed to provide comprehensive gene expression datasets to facilitate their exploration and equipped with several online analysis tools, including principal components analysis, differential gene expression analysis, tissue-specific gene expression analysis, GO and KEGG enrichment analysis. MangroveDB not only provides query functions about genes annotation, but also supports some useful visualization functions for analysis results, such as volcano plot, heatmap, dotplot, PCA plot, bubble plot, population structure etc. In conclusion, MangroveDB is a valuable resource for the mangroves research community to efficiently use the massive public omics datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The OnMapGaze dataset includes both experimental and analyzed gaze data collected during the observation of different cartographic backgrounds used in five online map services, including Google Maps, Wikimedia, Bing Maps, ESRI, and OSM at three different zoom levels (12z, 14z, & 16z).
A full description of the OnMapGaze dataset is cited in the paper below:
Liaskos, D., & Krassanakis, V. (2024). OnMapGaze and GraphGazeD: A Gaze Dataset and a Graph-Based Metric for Modeling Visual Perception Differences in Cartographic Backgrounds Used in Online Map Services. Multimodal Technologies and Interaction, 8(6). https://doi.org/10.3390/mti8060049
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mangroves are dominant flora of intertidal zones along tropical and subtropical coastline around the world that offer important ecological and economic value. Recently, the genomes of mangroves have been decoded, and massive omics data were generated and deposited in the public databases. Reanalysis of multi-omics data can provide new biological insights excluded in the original studies. However, the requirements for computational resource and lack of bioinformatics skill for experimental researchers limit the effective use of the original data. To fill this gap, we uniformly processed 942 transcriptome data, 386 whole-genome sequencing data, and provided 13 reference genomes and 40 reference transcriptomes for 53 mangroves. Finally, we built an interactive web-based database platform MangroveDB (https://github.com/Jasonxu0109/MangroveDB), which was designed to provide comprehensive gene expression datasets to facilitate their exploration and equipped with several online analysis tools, including principal components analysis, differential gene expression analysis, tissue-specific gene expression analysis, GO and KEGG enrichment analysis. MangroveDB not only provides query functions about genes annotation, but also supports some useful visualization functions for analysis results, such as volcano plot, heatmap, dotplot, PCA plot, bubble plot, population structure etc. In conclusion, MangroveDB is a valuable resource for the mangroves research community to efficiently use the massive public omics datasets.