CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Part of What Works Cities Certification is reporting our city's annual average concentration of PM2.5 (fine particular matter) does not exceed 10 milligrams per cubic meter.The information is sensor data from the Triple Oak Site (Site Number 0021) and Millbrook School (Site Number 0014).Please look to the Dataset Schema section below for descriptions of columns and data types. US Environmental Protection Agency. Air Data App Map [internet database] available at https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors. Accessed January 10, 2023. US Environmental Protection Agency. Air Quality System Data Mart [internet database] available at http://www.epa.gov/ttn/airs/aqsdatamart. Accessed January 10, 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Air Quality: PM2.5 Concentration: Monthly Average: Chongqing data was reported at 23.000 mcg/Cub m in Sep 2023. This records an increase from the previous number of 20.000 mcg/Cub m for Aug 2023. Air Quality: PM2.5 Concentration: Monthly Average: Chongqing data is updated monthly, averaging 36.000 mcg/Cub m from Nov 2014 (Median) to Sep 2023, with 105 observations. The data reached an all-time high of 127.000 mcg/Cub m in Jan 2015 and a record low of 14.000 mcg/Cub m in Aug 2022. Air Quality: PM2.5 Concentration: Monthly Average: Chongqing data remains active status in CEIC and is reported by China National Environmental Monitoring Centre. The data is categorized under China Premium Database’s Environmental Protection – Table CN.EPJ: Air Quality: PM2.5 Concentration: City. [COVID-19-IMPACT]
According to the monitoring data from the Embassy of the United States, there was on average 39 micrograms of PM2.5 particles per cubic meter to be found in the air in Beijing during 2023. The air quality has improved considerably since 2013.
Reasons for air pollution in Beijing
China’s capital city Beijing is one of the most populous cities in China with over 20 million inhabitants. Over the past 20 years, Beijing’s GDP has increased tenfold. With the significant growth of vehicles and energy consumption in the country, Beijing’s air quality is under great pressure from the economic development. In the past, the city had a high level of coal consumption. Especially in winter, in which coal consumption increased due to heating, the air quality could get extremely bad on the days without wind. In spring, the wind from the north would bring sand from Mongolian deserts, resulting in severe sandstorms in Beijing. The bad air quality also affected the air visibility and threatened people’s health. On days with very bad air quality, people wearing masks for protection can be seen on the streets in the city.
Methods to improve air quality in Beijing
Over the past years, the government has implemented various methods to improve the air quality in Northern China. Sandstorms, which were quite common 15 years ago, are now rarely seen in Beijing’s spring thanks to afforestation projects on China’s northern borders. The license-plate lottery system was introduced in Beijing to restrict the growth of private vehicles. Large trucks were not allowed to enter certain areas in Beijing. Above all, the coal consumption in Beijing has been restricted by shutting down industrial sites and improving heating systems. Beijing’s efforts to improve air quality has also been highly praised by the UN as a successful model for other cities. However, there is also criticism pointing out that the improvement of Beijing’s air quality is based on the sacrifice of surrounding provinces (including Hebei), as many factories were moved from Beijing to other regions. Besides air pollution, there are other environmental problems like water pollution that China is facing. The industrial transformation is the key to China’s environmental improvement.
This layer shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The layer shows the annual average PM 2.5 from 1998 to 2016, highlighting if the overall mean for an area meets the World Health Organization guideline of 10 micrograms per cubic meter annually. Areas that don't meet the guideline and are above the threshold are shown in red, and areas that are lower than the guideline are in grey.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality globally. Some of the things we can learn from this layer:What is the average annual PM 2.5 value over 19 years? (1998-2016)What is the annual average PM 2.5 value for each year from 1998 to 2016?What is the statistical trend for PM 2.5 over the 19 years? (downward or upward)Are there hot spots (or cold spots) of PM 2.5 over the 19 years?How many people are impacted by the air quality in an area?What is the death rate caused by the joint effects of air pollution?Choose a different attribute to symbolize in order to reveal any of the patterns above.A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis, trends, and a 19-year average. The country and administrative 1 layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries and population figures:Antarctica is excluded from all maps because it was not included in the original NASA grids.50km hex bins generated using the Generate Tessellation tool - projected to Behrmann Equal Area projection for analysesPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Administrative boundaries from World Administrative Divisions layer from ArcGIS Living Atlas - projected to Behrmann Equal Area projection for analyses and hosted in Web MercatorSources: Garmin, CIA World FactbookPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Country boundaries from Esri 2019 10.8 Data and Maps - projected to Behrmann Equal Area projection for analyses and hosted in Web Mercator. Sources: Garmin, Factbook, CIAPopulation figures attached to the country boundaries come from the World Population Estimate 2016 Sources Living Atlas layer Data processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The layers are hosted in Web Mercator Auxillary Sphere projection, but were processed using an equal area projection: Behrmann. If using this layer for analysis, it is recommended to start by projecting the data back to Behrmann.The country and administrative layer were dissolved and joined with population figures in order to visualize human impact.The dissolve tool ensures that each geographic area is only symbolized once within the map.Country boundaries were generalized post-analysis for visualization purposes. The tolerance used was 700m. If performing analysis with this layer, find detailed country boundaries in ArcGIS Living Atlas. To create the population-weighted attributes on the country and Admin 1 layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and the PM2.5 and population figures were summarized within the country and Admin 1 boundaries.The summation of the PM 2.5 values were then divided by the total population of each geography. This population value was determined by summarizing the population values from the hex bins within each geography.Some artifacts in the hex bin layer as a result of the input NASA rasters. Because the gridded surface is created from multiple satellites, there are strips within some areas that are a result of satellite paths. Some areas also have more of a continuous pattern between hex bins as a result of the input rasters.Within the country layer, an air pollution attributable death rate is included. 2016 figures are offered by the World Health Organization (WHO). Values are offered as a mean, upper value, lower value, and also offered as age standardized. Values are for deaths caused by all possible air pollution related diseases, for both sexes, and all age groups. For more information visit this page, and here for methodology. According to WHO, the world average was 95 deaths per 100,000 people.To learn the techniques used in this analysis, visit the Learn ArcGIS lesson Investigate Pollution Patterns with Space-Time Analysis by Esri's Kevin Bulter and Lynne Buie.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Air Quality: PM2.5 Concentration: Monthly Average: Chengdu data was reported at 25.000 mcg/Cub m in Sep 2023. This records an increase from the previous number of 18.000 mcg/Cub m for Aug 2023. Air Quality: PM2.5 Concentration: Monthly Average: Chengdu data is updated monthly, averaging 43.000 mcg/Cub m from Nov 2014 (Median) to Sep 2023, with 105 observations. The data reached an all-time high of 136.000 mcg/Cub m in Jan 2017 and a record low of 18.000 mcg/Cub m in Aug 2023. Air Quality: PM2.5 Concentration: Monthly Average: Chengdu data remains active status in CEIC and is reported by China National Environmental Monitoring Centre. The data is categorized under China Premium Database’s Environmental Protection – Table CN.EPJ: Air Quality: PM2.5 Concentration: City. [COVID-19-IMPACT]
This map shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5) by country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The layer shows the annual average PM 2.5 in 2016, highlighting if the overall mean for an area meets the World Health Organization guideline of 10 micrograms per cubic meter annually. Areas that don't meet the guideline and are above the threshold are shown in red, and areas that are lower than the guideline are in grey.PM 2.5 is fine particulate matter that is 2.5 microns or less in diameter. These particles can cause the air to be hazy, and can get into human lungs and the bloodstream causing major health concerns. To learn more about PM 2.5 and its global/human impacts, visit this World Health Organization page about ambient air pollution.The PM 2.5 data in this map is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement for PM 2.5 concentrations is micrograms per cubic meter. For full metadata and methodology documentation about the layer used in this map, visit this Living Atlas layer. For metadata and methodology about the data used to generate the layer, visit the NASA SEDAC gridded PM 2.5 documentation page or PDF.To learn the techniques used in the analysis that generated this layer, visit the Learn ArcGIS lesson Investigate Pollution Patterns with Space-Time Analysis by Esri's Kevin Bulter and Lynne Buie. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
🇬🇧 영국 English This report contains an introduction to PM2.5, summarises our current understanding of PM2.5 concentrations and exposure, discusses the findings of research undertaken by the GLA and TfL into the extent of PM2.5 pollution in London, and assesses the potential for meeting World Health Organisation guidelines by 2030. Our analysis found that at present all Londoners are exposed to concentrations higher than WHO air quality guidelines, but, if PM2.5 reduction measures within the Mayor’s Transport Strategy and London Environment Strategy are accompanied by co-operation on a national and international level, the guideline limit is achievable by 2030. The accompanying map is the annual mean PM2.5 concentration in Greater London for 2013 by Output Area, also provided is the data behind this map, which includes the annual average PM2.5 concentration of each Output Area (OA) in Greater London. You may need to use the OA data mapping available from the London Datastore to identify specific output areas.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The compressed package (study code.zip) contains the code files implemented by an under review paper ("Predicting short-term PM2.5 concentrations at fine temporal resolutions using a multi-branch temporal graph convolutional neural network").
Among the study code.zip, main.py is the model code based on a multi-branch temporal graph convolutional neural network. tgcn.py is the temporal graph convolutional network. utils.py contains some functions of graph convolution process. input_data.py is data processing.
The zip file (study data.zip) provides an example of air quality data including PM2.5 concentrations and some meteorological data. input_data.zip also contains a N by N adjacency matrix, which describes the spatial relationship between air quality monitoring stations.
Annual particulate matter (PM2.5) concentrations in India averaged **** micrograms per cubic meter of air (µg/m³) in 2024. While annual PM2.5 levels have fallen roughly ** percent since 2018, they remain more than ** times above the World Health Organization's recommended limit of five µg/m³.
The map shows annual mean concentrations of Particulate Matter (PM2.5) in Europe based on daily averages with at least 75% of valid measurements, in µg/m3 (source: EEA, AirBase v.8 & AQ e-Reporting)Thresholds used in the maps for annual values [µg/m3]:≤ 10: (10 μg/m3, as set out in the WHO air quality guideline for PM2.5)> 10 ≤ 20: (20 μg/m3, limit value as set out in the Air Quality Directive, 2008/50/EC)> 20 ≤ 25: (25 μg/m3, target value as set out in the Air Quality Directive, 2008/50/EC)> 25 ≤ 30> 30Source: AirBase v.8 & AQ e-ReportingAirBase is the European air quality database maintained by the EEA through its European topic centre on Air pollution and Climate Change mitigation. It contains air quality monitoring data and information submitted by participating countries throughout Europe.The air quality database consists of a multi-annual time series of air quality measurement data and statistics for a number of air pollutants. It also contains meta-information on those monitoring networks involved, their stations and their measurements.The database covers geographically all EU Member States, the EEA member countries and some EEA collaborating countries. The EU Member States are bound under Decision 97/101/EC to engage in a reciprocal exchange of information (EoI) on ambient air quality. The EEA engages with its member and collaborating countries to collect the information foreseen by the EoI Decision because air pollution is a pan European issue and the EEA is the European body which produces assessments of air quality, covering the whole geographical area of Europe.
This map shows the modelled concentration of particulate matter (μg PM2.5/m3) for 2022 based on calculation points from the NSL monitoring tool. This plane-covering map of the Netherlands has a resolution of 25 meters.
The map shows annual mean concentrations of Particulate Matter (PM2.5) in Europe based on daily averages with at least 75% of valid measurements, in µg/m3 (source: EEA, AirBase v.8 & AQ e-Reporting)Thresholds used in the maps for annual values [µg/m3]:≤ 10: (10 μg/m3, as set out in the WHO air quality guideline for PM2.5)> 10 ≤ 20: (20 μg/m3, limit value as set out in the Air Quality Directive, 2008/50/EC)> 20 ≤ 25: (25 μg/m3, target value as set out in the Air Quality Directive, 2008/50/EC)> 25 ≤ 30> 30Source: AirBase v.8 & AQ e-ReportingAirBase is the European air quality database maintained by the EEA through its European topic centre on Air pollution and Climate Change mitigation. It contains air quality monitoring data and information submitted by participating countries throughout Europe.The air quality database consists of a multi-annual time series of air quality measurement data and statistics for a number of air pollutants. It also contains meta-information on those monitoring networks involved, their stations and their measurements.The database covers geographically all EU Member States, the EEA member countries and some EEA collaborating countries. The EU Member States are bound under Decision 97/101/EC to engage in a reciprocal exchange of information (EoI) on ambient air quality. The EEA engages with its member and collaborating countries to collect the information foreseen by the EoI Decision because air pollution is a pan European issue and the EEA is the European body which produces assessments of air quality, covering the whole geographical area of Europe.
The map shows annual mean concentrations of Particulate Matter (PM2.5) in Europe based on daily averages with at least 75% of valid measurements, in µg/m3 (source: EEA, AirBase v.8 & AQ e-Reporting)Thresholds used in the maps for annual values [µg/m3]:≤ 10: (10 μg/m3, as set out in the WHO air quality guideline for PM2.5)> 10 ≤ 20: (20 μg/m3, limit value as set out in the Air Quality Directive, 2008/50/EC)> 20 ≤ 25: (25 μg/m3, target value as set out in the Air Quality Directive, 2008/50/EC)> 25 ≤ 30> 30Source: AirBase v.8 & AQ e-ReportingAirBase is the European air quality database maintained by the EEA through its European topic centre on Air pollution and Climate Change mitigation. It contains air quality monitoring data and information submitted by participating countries throughout Europe.The air quality database consists of a multi-annual time series of air quality measurement data and statistics for a number of air pollutants. It also contains meta-information on those monitoring networks involved, their stations and their measurements.The database covers geographically all EU Member States, the EEA member countries and some EEA collaborating countries. The EU Member States are bound under Decision 97/101/EC to engage in a reciprocal exchange of information (EoI) on ambient air quality. The EEA engages with its member and collaborating countries to collect the information foreseen by the EoI Decision because air pollution is a pan European issue and the EEA is the European body which produces assessments of air quality, covering the whole geographical area of Europe.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Air Quality: PM2.5 Concentration: Monthly Average: Shanghai data was reported at 27.600 mcg/Cub m in Mar 2025. This records a decrease from the previous number of 38.900 mcg/Cub m for Feb 2025. Air Quality: PM2.5 Concentration: Monthly Average: Shanghai data is updated monthly, averaging 34.000 mcg/Cub m from Jun 2013 (Median) to Mar 2025, with 140 observations. The data reached an all-time high of 128.000 mcg/Cub m in Dec 2013 and a record low of 14.000 mcg/Cub m in Sep 2024. Air Quality: PM2.5 Concentration: Monthly Average: Shanghai data remains active status in CEIC and is reported by China National Environmental Monitoring Centre. The data is categorized under China Premium Database’s Environmental Protection – Table CN.EPJ: Air Quality: PM2.5 Concentration: City. [COVID-19-IMPACT]
The map shows annual mean concentrations of Particulate Matter (PM2.5) in Europe based on daily averages with at least 75% of valid measurements, in µg/m3 (source: EEA, AirBase v.8 & AQ e-Reporting)Thresholds used in the maps for annual values [µg/m3]:≤ 10: (10 μg/m3, as set out in the WHO air quality guideline for PM2.5)> 10 ≤ 20: (20 μg/m3, limit value as set out in the Air Quality Directive, 2008/50/EC)> 20 ≤ 25: (25 μg/m3, target value as set out in the Air Quality Directive, 2008/50/EC)> 25 ≤ 30> 30Source: AirBase v.8 & AQ e-ReportingAirBase is the European air quality database maintained by the EEA through its European topic centre on Air pollution and Climate Change mitigation. It contains air quality monitoring data and information submitted by participating countries throughout Europe.The air quality database consists of a multi-annual time series of air quality measurement data and statistics for a number of air pollutants. It also contains meta-information on those monitoring networks involved, their stations and their measurements.The database covers geographically all EU Member States, the EEA member countries and some EEA collaborating countries. The EU Member States are bound under Decision 97/101/EC to engage in a reciprocal exchange of information (EoI) on ambient air quality. The EEA engages with its member and collaborating countries to collect the information foreseen by the EoI Decision because air pollution is a pan European issue and the EEA is the European body which produces assessments of air quality, covering the whole geographical area of Europe.
The map shows annual mean concentrations of Particulate Matter (PM2.5) in Europe based on daily averages with at least 75% of valid measurements, in µg/m3 (source: EEA, AirBase v.8 & AQ e-Reporting)Thresholds used in the maps for annual values [µg/m3]:≤ 10: (10 μg/m3, as set out in the WHO air quality guideline for PM2.5)> 10 ≤ 20: (20 μg/m3, limit value as set out in the Air Quality Directive, 2008/50/EC)> 20 ≤ 25: (25 μg/m3, target value as set out in the Air Quality Directive, 2008/50/EC)> 25 ≤ 30> 30Source: AirBase v.8 & AQ e-ReportingAirBase is the European air quality database maintained by the EEA through its European topic centre on Air pollution and Climate Change mitigation. It contains air quality monitoring data and information submitted by participating countries throughout Europe.The air quality database consists of a multi-annual time series of air quality measurement data and statistics for a number of air pollutants. It also contains meta-information on those monitoring networks involved, their stations and their measurements.The database covers geographically all EU Member States, the EEA member countries and some EEA collaborating countries. The EU Member States are bound under Decision 97/101/EC to engage in a reciprocal exchange of information (EoI) on ambient air quality. The EEA engages with its member and collaborating countries to collect the information foreseen by the EoI Decision because air pollution is a pan European issue and the EEA is the European body which produces assessments of air quality, covering the whole geographical area of Europe.
https://data.mfe.govt.nz/license/attribution-3-0-new-zealand/https://data.mfe.govt.nz/license/attribution-3-0-new-zealand/
PM2.5 are particles 2.5 micrometres or less in diameter. PM2.5 is emitted from the combustion of fuels, such as wood and coal (eg from home heating and industry), and petrol and diesel (eg from vehicles). Natural sources have less influence on PM2.5 concentrations than PM10 concentrations. This means PM2.5 comes mainly from human activities. Nationally, burning wood or coal for home heating is the main source of PM2.5.
PM2.5 is a component of PM10 and is associated with similar health effects, ranging from respiratory irritation to some forms of cancer. However, the smaller PM2.5 particles are more closely associated with severe health problems.
Column headings: - No_exceed - Number of exceedances - Disp_graph - Displayed on graph (1= yes, 0 = no)
This dataset relates to the "PM2.5 concentrations" measure on the Environmental Indicators, Te taiao Aotearoa website.
The map shows annual mean concentrations of Particulate Matter (PM2.5) in Europe based on daily averages with at least 75% of valid measurements, in µg/m3 (source: EEA, AirBase v.8 & AQ e-Reporting)Thresholds used in the maps for annual values [µg/m3]:≤ 10: (10 μg/m3, as set out in the WHO air quality guideline for PM2.5)> 10 ≤ 20: (20 μg/m3, limit value as set out in the Air Quality Directive, 2008/50/EC)> 20 ≤ 25: (25 μg/m3, target value as set out in the Air Quality Directive, 2008/50/EC)> 25 ≤ 30> 30Source: AirBase v.8 & AQ e-ReportingAirBase is the European air quality database maintained by the EEA through its European topic centre on Air pollution and Climate Change mitigation. It contains air quality monitoring data and information submitted by participating countries throughout Europe.The air quality database consists of a multi-annual time series of air quality measurement data and statistics for a number of air pollutants. It also contains meta-information on those monitoring networks involved, their stations and their measurements.The database covers geographically all EU Member States, the EEA member countries and some EEA collaborating countries. The EU Member States are bound under Decision 97/101/EC to engage in a reciprocal exchange of information (EoI) on ambient air quality. The EEA engages with its member and collaborating countries to collect the information foreseen by the EoI Decision because air pollution is a pan European issue and the EEA is the European body which produces assessments of air quality, covering the whole geographical area of Europe.
The map shows annual mean concentrations of Particulate Matter (PM2.5) in Europe based on daily averages with at least 75% of valid measurements, in µg/m3 (source: EEA, AirBase v.8 & AQ e-Reporting)Thresholds used in the maps for annual values [µg/m3]:≤ 10: (10 μg/m3, as set out in the WHO air quality guideline for PM2.5)> 10 ≤ 20: (20 μg/m3, limit value as set out in the Air Quality Directive, 2008/50/EC)> 20 ≤ 25: (25 μg/m3, target value as set out in the Air Quality Directive, 2008/50/EC)> 25 ≤ 30> 30Source: AirBase v.8 & AQ e-ReportingAirBase is the European air quality database maintained by the EEA through its European topic centre on Air pollution and Climate Change mitigation. It contains air quality monitoring data and information submitted by participating countries throughout Europe.The air quality database consists of a multi-annual time series of air quality measurement data and statistics for a number of air pollutants. It also contains meta-information on those monitoring networks involved, their stations and their measurements.The database covers geographically all EU Member States, the EEA member countries and some EEA collaborating countries. The EU Member States are bound under Decision 97/101/EC to engage in a reciprocal exchange of information (EoI) on ambient air quality. The EEA engages with its member and collaborating countries to collect the information foreseen by the EoI Decision because air pollution is a pan European issue and the EEA is the European body which produces assessments of air quality, covering the whole geographical area of Europe.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AIR: PM2.5. Published by Environmental Protection Agency. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).The PM2.5 data map details modelled annual concentrations of PM2.5 for Dublin, 2017....
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Part of What Works Cities Certification is reporting our city's annual average concentration of PM2.5 (fine particular matter) does not exceed 10 milligrams per cubic meter.The information is sensor data from the Triple Oak Site (Site Number 0021) and Millbrook School (Site Number 0014).Please look to the Dataset Schema section below for descriptions of columns and data types. US Environmental Protection Agency. Air Data App Map [internet database] available at https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors. Accessed January 10, 2023. US Environmental Protection Agency. Air Quality System Data Mart [internet database] available at http://www.epa.gov/ttn/airs/aqsdatamart. Accessed January 10, 2023.