100+ datasets found
  1. n

    NYS Address Points

    • data.gis.ny.gov
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShareGIS NY (2022). NYS Address Points [Dataset]. https://data.gis.ny.gov/maps/nys-address-points/explore
    Explore at:
    Dataset updated
    Dec 19, 2022
    Dataset authored and provided by
    ShareGIS NY
    Area covered
    Description

    A Feature web service of the Address Point file of buildings and properties in New York State. Please note that, due to the large size, the NYS Address Point statewide layer cannot be downloaded in shapefile format. A map service of the Street and Address Maintenance (SAM) Program Address Point file is available here: https://gisservices.its.ny.gov/arcgis/rest/services.SAM Address Points Data Dictionary: https://gis.ny.gov/system/files/documents/2024/02/address-points-data-dictionary.pdf. If the purpose of accessing the address points service is for geocoding, NYS ITS has a publicly available geocoding service which includes the address points along with other layers. For more information about the geocoding service, please visit: https://gis.ny.gov/address-geocoder. For more information about the SAM Program, please visit: https://gis.ny.gov/streets-addresses.Please contact NYS ITS Geospatial Services at nysgis@its.ny.gov if you have any questions. Publication Date: See Update Frequency. Current as of Date: 2 business days prior to Publication Date. Update frequency: Second and fourth Friday of each month. Spatial Reference of Source Data: NAD_1983_UTM_Zone_18N. Spatial Reference of Map Service: WGS 1984 Web Mercator Auxiliary.This feature service is available to the public.

  2. d

    Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories,...

    • datarade.ai
    .json
    Updated Sep 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2024). Global Point of Interest (POI) Data | 230M+ Locations, 5000 Categories, Geographic & Location Intelligence, Regular Updates [Dataset]. https://datarade.ai/data-products/global-point-of-interest-poi-data-230m-locations-5000-c-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 7, 2024
    Dataset provided by
    Xverum LLC
    Authors
    Xverum
    Area covered
    Andorra, Mauritania, Northern Mariana Islands, French Polynesia, Bahamas, Kyrgyzstan, Vietnam, Costa Rica, Antarctica, Guatemala
    Description

    Xverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.

    With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.

    🔥 Key Features:

    Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.

    Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.

    Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.

    Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.

    Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.

    Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.

    🏆Primary Use Cases:

    Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.

    Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.

    Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.

    Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.

    💡 Why Choose Xverum’s POI Data?

    • 230M+ Verified POI Records – One of the largest & most detailed location datasets available.
    • Global Coverage – POI data from 249+ countries, covering all major business sectors.
    • Regular Updates – Ensuring accurate tracking of business openings & closures.
    • Comprehensive Geographic & Business Data – Coordinates, addresses, categories, and more.
    • Bulk Dataset Delivery – S3 Bucket & cloud storage delivery for full dataset access.
    • 100% Compliant – Ethically sourced, privacy-compliant data.

    Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!

  3. P

    Broward County GIS Address Points

    • data.pompanobeachfl.gov
    • geohub-bcgis.opendata.arcgis.com
    Updated Aug 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    External Datasets (2023). Broward County GIS Address Points [Dataset]. https://data.pompanobeachfl.gov/dataset/broward-county-gis-address-points
    Explore at:
    zip, html, kml, csv, arcgis geoservices rest api, geojsonAvailable download formats
    Dataset updated
    Aug 8, 2023
    Dataset provided by
    cjennings_BCGIS
    Authors
    External Datasets
    Area covered
    Broward County
    Description

    This GIS Address Point dataset was created and updated by Broward County GIS. As of May 1st, 2015, all single-family residential homes have been updated in this layer and placed on corresponding building footprints when applicable. Since then other addresses are added as they become available from various authoritative sources. December 2016 reprojected to NAD 1983 HARN State Plane Florida East FIPS 0901 Feet.

    · Regular updates to this dataset as new data is submitted and verified.

    · Data is considered current.

    This layer is not a complete set of addresses in Broward County. We are in the process of accomplishing our goal to provide emergency services with a precise dataset conducive to rapid and efficient emergency response. Expected completion date is unknown at this time. Future enhancements will include addresses for multi-family residences, strip malls, businesses, etc.

    Source: BCGIS,, BCPA

    Effective Date: 2019

    Update cycle; Daily

  4. d

    Location Data | 3.5M+ Point of Interest (POI) in US and Canada | Geospatial...

    • datarade.ai
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xtract (2022). Location Data | 3.5M+ Point of Interest (POI) in US and Canada | Geospatial Dataset for GIS & Mapping Platforms [Dataset]. https://datarade.ai/data-products/poi-data-locations-data-us-and-canada-xtract
    Explore at:
    .json, .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset authored and provided by
    Xtract
    Area covered
    Canada, United States
    Description

    Xtract.io’s massive 3.5M+ POI database represents a transformative resource for advanced location intelligence across the United States and Canada. Data scientists, GIS professionals, big data analysts, market researchers, and strategic planners can leverage these comprehensive places data insights to develop sophisticated market strategies, conduct advanced spatial analyses, and gain a deep understanding of regional geographical landscapes.

    Point of Interest (POI) data, also known as places data, provides the exact location of buildings, stores, or specific places. It has become essential for businesses to make smarter, geography-driven decisions in today's competitive landscape with comprehensive POI coverage.

    LocationsXYZ, the POI data product from Xtract.io, offers a comprehensive POI database of 6 million locations across the US, UK, and Canada, spanning 11 diverse industries, including: -Retail -Restaurants -Healthcare -Automotive -Public utilities (e.g., ATMs, park-and-ride locations) -Shopping malls, and more

    Why Choose LocationsXYZ for Comprehensive Location Data? At LocationsXYZ, we: -Deliver 3.5M+ POI data with 95% accuracy -Refresh places data every 30, 60, or 90 days to ensure the most recent information -Create on-demand comprehensive POI datasets tailored to your specific needs -Handcraft boundaries (geofences) for locations to enhance accuracy -Provide multi-industry POI data and polygon data in multiple file formats

    Unlock the Power of Places Data With our comprehensive location intelligence, you can: -Perform thorough market analyses across multiple industries -Identify the best locations for new stores using POI database insights -Gain insights into consumer behavior with places data -Achieve an edge with competitive intelligence using comprehensive coverage

    LocationsXYZ has empowered businesses with geospatial insights and comprehensive location data, helping them scale and make informed decisions. Join our growing list of satisfied customers and unlock your business's potential with our cutting-edge 3.5M+ POI database.

  5. n

    Data from: A new digital method of data collection for spatial point pattern...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chao Jiang; Xinting Wang (2021). A new digital method of data collection for spatial point pattern analysis in grassland communities [Dataset]. http://doi.org/10.5061/dryad.brv15dv70
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    Inner Mongolia University of Technology
    Chinese Academy of Agricultural Sciences
    Authors
    Chao Jiang; Xinting Wang
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    A major objective of plant ecology research is to determine the underlying processes responsible for the observed spatial distribution patterns of plant species. Plants can be approximated as points in space for this purpose, and thus, spatial point pattern analysis has become increasingly popular in ecological research. The basic piece of data for point pattern analysis is a point location of an ecological object in some study region. Therefore, point pattern analysis can only be performed if data can be collected. However, due to the lack of a convenient sampling method, a few previous studies have used point pattern analysis to examine the spatial patterns of grassland species. This is unfortunate because being able to explore point patterns in grassland systems has widespread implications for population dynamics, community-level patterns and ecological processes. In this study, we develop a new method to measure individual coordinates of species in grassland communities. This method records plant growing positions via digital picture samples that have been sub-blocked within a geographical information system (GIS). Here, we tested out the new method by measuring the individual coordinates of Stipa grandis in grazed and ungrazed S. grandis communities in a temperate steppe ecosystem in China. Furthermore, we analyzed the pattern of S. grandis by using the pair correlation function g(r) with both a homogeneous Poisson process and a heterogeneous Poisson process. Our results showed that individuals of S. grandis were overdispersed according to the homogeneous Poisson process at 0-0.16 m in the ungrazed community, while they were clustered at 0.19 m according to the homogeneous and heterogeneous Poisson processes in the grazed community. These results suggest that competitive interactions dominated the ungrazed community, while facilitative interactions dominated the grazed community. In sum, we successfully executed a new sampling method, using digital photography and a Geographical Information System, to collect experimental data on the spatial point patterns for the populations in this grassland community.

    Methods 1. Data collection using digital photographs and GIS

    A flat 5 m x 5 m sampling block was chosen in a study grassland community and divided with bamboo chopsticks into 100 sub-blocks of 50 cm x 50 cm (Fig. 1). A digital camera was then mounted to a telescoping stake and positioned in the center of each sub-block to photograph vegetation within a 0.25 m2 area. Pictures were taken 1.75 m above the ground at an approximate downward angle of 90° (Fig. 2). Automatic camera settings were used for focus, lighting and shutter speed. After photographing the plot as a whole, photographs were taken of each individual plant in each sub-block. In order to identify each individual plant from the digital images, each plant was uniquely marked before the pictures were taken (Fig. 2 B).

    Digital images were imported into a computer as JPEG files, and the position of each plant in the pictures was determined using GIS. This involved four steps: 1) A reference frame (Fig. 3) was established using R2V software to designate control points, or the four vertexes of each sub-block (Appendix S1), so that all plants in each sub-block were within the same reference frame. The parallax and optical distortion in the raster images was then geometrically corrected based on these selected control points; 2) Maps, or layers in GIS terminology, were set up for each species as PROJECT files (Appendix S2), and all individuals in each sub-block were digitized using R2V software (Appendix S3). For accuracy, the digitization of plant individual locations was performed manually; 3) Each plant species layer was exported from a PROJECT file to a SHAPE file in R2V software (Appendix S4); 4) Finally each species layer was opened in Arc GIS software in the SHAPE file format, and attribute data from each species layer was exported into Arc GIS to obtain the precise coordinates for each species. This last phase involved four steps of its own, from adding the data (Appendix S5), to opening the attribute table (Appendix S6), to adding new x and y coordinate fields (Appendix S7) and to obtaining the x and y coordinates and filling in the new fields (Appendix S8).

    1. Data reliability assessment

    To determine the accuracy of our new method, we measured the individual locations of Leymus chinensis, a perennial rhizome grass, in representative community blocks 5 m x 5 m in size in typical steppe habitat in the Inner Mongolia Autonomous Region of China in July 2010 (Fig. 4 A). As our standard for comparison, we used a ruler to measure the individual coordinates of L. chinensis. We tested for significant differences between (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler (see section 3.2 Data Analysis). If (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler, did not differ significantly, then we could conclude that our new method of measuring the coordinates of L. chinensis was reliable.

    We compared the results using a t-test (Table 1). We found no significant differences in either (1) the coordinates of L. chinensis or (2) the pair correlation function g of L. chinensis. Further, we compared the pattern characteristics of L. chinensis when measured by our new method against the ruler measurements using a null model. We found that the two pattern characteristics of L. chinensis did not differ significantly based on the homogenous Poisson process or complete spatial randomness (Fig. 4 B). Thus, we concluded that the data obtained using our new method was reliable enough to perform point pattern analysis with a null model in grassland communities.

  6. GIS for empirical research design: An illustration with georeferenced point...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katsuo Kogure; Yoshito Takasaki (2023). GIS for empirical research design: An illustration with georeferenced point data [Dataset]. http://doi.org/10.1371/journal.pone.0212316
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Katsuo Kogure; Yoshito Takasaki
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper demonstrates how Geographic Information Systems (GIS) can be utilized to study the effects of spatial phenomena. Since experimental designs such as Randomized Controlled Trials are generally not feasible for spatial problems, researchers need to rely on quasi-experimental approaches using observational data. We provide a regression-based framework of the key procedures for GIS-based empirical research design using georeferenced point data for both spatial events of interest and subjects exposed to the events. We illustrate its utility and implementation through a case study on the impacts of the Cambodian genocide under the Pol Pot regime on post-conflict education.

  7. a

    Address Points for NJ, Hosted, 3424

    • hub.arcgis.com
    • njogis-newjersey.opendata.arcgis.com
    • +1more
    Updated Jun 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Jersey Office of GIS (2021). Address Points for NJ, Hosted, 3424 [Dataset]. https://hub.arcgis.com/maps/5051f228c9074aa7b4116f835893c9fa
    Explore at:
    Dataset updated
    Jun 7, 2021
    Dataset authored and provided by
    New Jersey Office of GIS
    Area covered
    Description

    Statewide Download (FGDB) (SHP)Users can also download smaller geographic areas of this feature service in ArcGIS Pro using the Copy Features geoprocessing tool. The address service contains statewide address points and related landmark name alias table and street name alias table.The New Jersey Office of Information Technology, Office of GIS (NJOGIS), in partnership with several local GIS and public safety agencies, has built a comprehensive statewide NG9-1-1 database meeting and exceeding the requirements of the National Emergency Number Association (NENA) 2018 NG9-1-1 GIS Data Standard (NENA-STA-006.1-2018). The existing New Jersey Statewide Address Point data last published in 2016 has been transformed in the NENA data model to create this new address point data.The initial address points were processed from statewide parcel records joined with the statewide Tax Assessor's (MOD-IV) database in 2015. Address points supplied by Monmouth County, Sussex County, Morris County and Montgomery Township in Somerset County were incorporated into the statewide address points using customized Extract, Transform and Load (ETL) procedures.The previous version of the address points was loaded into New Jersey's version of the NENA NG9-1-1 data model using Extract, Transform and Load (ETL) procedures created with Esri's Data Interoperability Extension. Subsequent manual and bulk processing corrections and additions have been made, and are ongoing.***NOTE*** For users who incorporate NJOGIS services into web maps and/or web applications, please sign up for the NJ Geospatial Forum discussion listserv for early notification of service changes. Visit https://nj.gov/njgf/about/listserv/ for more information.

  8. Data from: Texas Cities

    • gis-txdot.opendata.arcgis.com
    • geoportal-mpo.opendata.arcgis.com
    • +1more
    Updated Mar 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Texas Department of Transportation (2024). Texas Cities [Dataset]. https://gis-txdot.opendata.arcgis.com/datasets/texas-cities
    Explore at:
    Dataset updated
    Mar 22, 2024
    Dataset authored and provided by
    Texas Department of Transportationhttp://txdot.gov/
    Area covered
    Description

    City point locations are derived from boundary polygons of incorporated cities using the centroid of the polygon. Additional unincorporated points are also included. The data was created by the Transportation Planning and Programming Division of TxDOT in the Data Analysis, Mapping and Reporting Branch as a base layer for TxDOT's Cartographic products.Update Frequency: As NeededSource: Local GovernmentsSecurity Level: PublicOwned by TxDOT: FalseRelated LinksData Dictionary PDF [Generated 2025/03/14]

  9. a

    Address Points

    • hub-cookcountyil.opendata.arcgis.com
    • hub-ssmma-gis.opendata.arcgis.com
    Updated Jun 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cook County Government (2016). Address Points [Dataset]. https://hub-cookcountyil.opendata.arcgis.com/datasets/5ec856ded93e4f85b3f6e1bc027a2472
    Explore at:
    Dataset updated
    Jun 1, 2016
    Dataset authored and provided by
    Cook County Government
    Area covered
    Description

    This feature layer contains one point for every address in Cook County. Data is updated and maintained by Cook County GIS. If you plan on downloading this dataset it is recommended to use the File Geodatabase or Spreadsheet options. The shapefile format may not work for larger datasets.

  10. WSDOT - GIS Point Feature Class Template

    • data-wa-geoservices.opendata.arcgis.com
    • geo.wa.gov
    • +1more
    Updated Jan 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WSDOT Online Map Center (2020). WSDOT - GIS Point Feature Class Template [Dataset]. https://data-wa-geoservices.opendata.arcgis.com/datasets/WSDOT::wsdot-gis-point-feature-class-template/about
    Explore at:
    Dataset updated
    Jan 16, 2020
    Dataset provided by
    Washington State Department of Transportationhttps://wsdot.wa.gov/
    Authors
    WSDOT Online Map Center
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    WSDOT template for Esri file geodatabase point feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.

  11. a

    Common Points of Interest for King County / common interest point

    • gis-kingcounty.opendata.arcgis.com
    • king-snocoplanning.opendata.arcgis.com
    • +1more
    Updated Jun 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2017). Common Points of Interest for King County / common interest point [Dataset]. https://gis-kingcounty.opendata.arcgis.com/datasets/common-points-of-interest-for-king-county-common-interest-point/data
    Explore at:
    Dataset updated
    Jun 22, 2017
    Dataset authored and provided by
    King County
    Area covered
    Description

    For more information about this layer please see the GIS Data Catalog.Authoritative Points-of-Interest layer for King County. Contains over 45 different domain classes showing locations and names for a range of different features. Some classes of features are extensively documented (such as school sites and hospitals) while other classes represent a selected set of all the features of that type (such as hotels and shopping centers). Each feature is represented by a single point describing the centroid of the feature. Multiple points for a single XY coordinate may exist if more than one domain is represented. In other words, a single feature may represent a hospital, but that same point may be represented by another feature (i.e., record) described as a Public Health Clinic. Signficant reviews/updates across a specific domain are described in the Lineage of COMMON_INTEREST_POINT and any domain-specific datasets; other corrections and adhoc updates are not detailed in the Lineage.

  12. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Coal Oil Point, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  13. d

    CJCZO -- GIS/Map Data -- EEMT -- Santa Catalina Mountains -- (2010-2010)

    • search.dataone.org
    • hydroshare.org
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Craig Rasmussen; Matej Durcik (2021). CJCZO -- GIS/Map Data -- EEMT -- Santa Catalina Mountains -- (2010-2010) [Dataset]. https://search.dataone.org/view/sha256%3Af79c5b6ae39494aa0732981635ad3e39b5f731343ea03de995bc59a1c67ceb6b
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Craig Rasmussen; Matej Durcik
    Time period covered
    Jan 1, 2010 - Dec 31, 2010
    Area covered
    Description

    Yearly effective energy and mass transfer (EEMT) (MJ m−2 yr−1) was calculated for the Catalina Mountains by summing the 12 monthly values. Effective energy and mass flux varies seasonally, especially in the desert southwestern United States where contemporary climate includes a bimodal precipitation distribution that concentrates in winter (rain or snow depending on elevation) and summer monsoon periods. This seasonality of EEMT flux into the upper soil surface can be estimated by calculating EEMT on a monthly basis as constrained by solar radiation (Rs), temperature (T), precipitation (PPT), and the vapor pressure deficit (VPD): EEMT = f(Rs,T,PPT,VPD). Here we used a multiple linear regression model to calculate the monthly EEMT that accounts for VPD, PPT, and locally modified T across the terrain surface. These EEMT calculations were made using data from the PRISM Climate Group at Oregon State University (www.prismclimate.org). Climate data are provided at an 800-m spatial resolution for input precipitation and minimum and maximum temperature normals and at a 4000-m spatial resolution for dew-point temperature (Daly et al., 2002). The PRISM climate data, however, do not account for localized variation in EEMT that results from smaller spatial scale changes in slope and aspect as occurs within catchments. To address this issue, these data were then combined with 10-m digital elevation maps to compute the effects of local slope and aspect on incoming solar radiation and hence locally modified temperature (Yang et al., 2007). Monthly average dew-point temperatures were computed using 10 yr of monthly data (2000–2009) and converted to vapor pressure. Precipitation, temperature, and dew-point data were resampled on a 10-m grid using spline interpolation. Monthly solar radiation data (direct and diffuse) were computed using ArcGIS Solar Analyst extension (ESRI, Redlands, CA) and 10-m elevation data (USGS National Elevation Dataset [NED] 1/3 Arc-Second downloaded from the National Map Seamless Server at seamless.usgs.gov). Locally modified temperature was used to compute the saturated vapor pressure, and the local VPD was estimated as the difference between the saturated and actual vapor pressures. The regression model was derived using the ISOHYS climate data set comprised of approximately 30-yr average monthly means for more than 300 weather stations spanning all latitudes and longitudes (IAEA).

  14. Geospatial data for the Vegetation Mapping Inventory Project of Pictured...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pictured-rocks-national-la
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Pictured Rocks
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  15. Digital Geologic Map of the Point Loma Quadrangle and area immediately west,...

    • catalog.data.gov
    • gimi9.com
    • +2more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic Map of the Point Loma Quadrangle and area immediately west, California (NPS, GRD, GRI, CABR, POLM digital map) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-map-of-the-point-loma-quadrangle-and-area-immediately-west-california-nps
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Point Loma, California
    Description

    The Digital Geologic Map of the Point Loma Quadrangle and area immediately west, California is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: California Division of Mines and Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (polm_metadata.txt; available at http://nrdata.nps.gov/cabr/nrdata/geology/gis/polm_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (polm_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of Cabrillo National Monument.

  16. h

    Address Points

    • data.hartford.gov
    • catalog.data.gov
    • +1more
    Updated Sep 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Hartford (2024). Address Points [Dataset]. https://data.hartford.gov/datasets/hartfordgis::address-points
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    City of Hartford
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data was compiled by MobileVideo in 2002 in a windshield survey of building entrances. This data is updated daily by the City's GIS Staff with field verification done by DPW, License and Inspection or Fire Marshall's Office.

  17. n

    Georeferenced Population Datasets of Mexico (GEO-MEX): Urban Place GIS...

    • earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    • +2more
    Updated Dec 31, 1994
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (1994). Georeferenced Population Datasets of Mexico (GEO-MEX): Urban Place GIS Coverage of Mexico [Dataset]. http://doi.org/10.7927/H4WW7FKN
    Explore at:
    Dataset updated
    Dec 31, 1994
    Dataset authored and provided by
    ESDIS
    Description

    The Urban Place GIS Coverage of Mexico is a vector based point Geographic Information System (GIS) coverage of 696 urban places in Mexico. Each Urban Place is geographically referenced down to one tenth of a minute. The attribute data include time-series population and selected census/geographic data items for Mexican urban places from from 1921 to 1990. The cartographic data include urban place point locations on a state boundary file of Mexico. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Instituto Nacional de Estadistica Geografia e Informatica (INEGI) and the Environmental Research Institute (ERI) of Michigan.

  18. d

    SafeGraph GIS Data | Global Coverage | 75M+ Places

    • datarade.ai
    .csv
    Updated Mar 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SafeGraph (2023). SafeGraph GIS Data | Global Coverage | 75M+ Places [Dataset]. https://datarade.ai/data-products/safegraph-gis-data-global-coverage-41m-places-safegraph
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 23, 2023
    Dataset authored and provided by
    SafeGraph
    Area covered
    French Guiana, Mali, Uruguay, Sierra Leone, Guyana, Yemen, Finland, Antarctica, Puerto Rico, Cook Islands
    Description

    SafeGraph Places provides baseline information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).

    SafeGraph Places is a point of interest (POI) data offering with varying coverage depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.

  19. Address Point Rooftop Data

    • caliper.com
    cdf, dwg, dxf, gdb +9
    Updated Nov 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caliper Corporation (2020). Address Point Rooftop Data [Dataset]. https://www.caliper.com/mapping-software-data/address-point-data.htm
    Explore at:
    sql server mssql, kml, shp, postgresql, cdf, postgis, gdb, sdo, ntf, kmz, geojson, dwg, dxfAvailable download formats
    Dataset updated
    Nov 17, 2020
    Dataset authored and provided by
    Caliper Corporationhttp://www.caliper.com/
    License

    https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm

    Time period covered
    2020
    Area covered
    United States
    Description

    Address point data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain a point layer of over 48 million addresses in 22 states and the District of Columbia.

  20. WSDOT - City Points

    • gisdata-wsdot.opendata.arcgis.com
    • geo.wa.gov
    • +3more
    Updated Jan 8, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WSDOT Online Map Center (2010). WSDOT - City Points [Dataset]. https://gisdata-wsdot.opendata.arcgis.com/datasets/wsdot-city-points
    Explore at:
    Dataset updated
    Jan 8, 2010
    Dataset provided by
    Washington State Department of Transportationhttps://wsdot.wa.gov/
    Authors
    WSDOT Online Map Center
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Point file of all incorporated cities in the state of Washington. Points were taken from the main polygon for each incorporated entity shown in the City Limits of Washington State data set.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ShareGIS NY (2022). NYS Address Points [Dataset]. https://data.gis.ny.gov/maps/nys-address-points/explore

NYS Address Points

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 19, 2022
Dataset authored and provided by
ShareGIS NY
Area covered
Description

A Feature web service of the Address Point file of buildings and properties in New York State. Please note that, due to the large size, the NYS Address Point statewide layer cannot be downloaded in shapefile format. A map service of the Street and Address Maintenance (SAM) Program Address Point file is available here: https://gisservices.its.ny.gov/arcgis/rest/services.SAM Address Points Data Dictionary: https://gis.ny.gov/system/files/documents/2024/02/address-points-data-dictionary.pdf. If the purpose of accessing the address points service is for geocoding, NYS ITS has a publicly available geocoding service which includes the address points along with other layers. For more information about the geocoding service, please visit: https://gis.ny.gov/address-geocoder. For more information about the SAM Program, please visit: https://gis.ny.gov/streets-addresses.Please contact NYS ITS Geospatial Services at nysgis@its.ny.gov if you have any questions. Publication Date: See Update Frequency. Current as of Date: 2 business days prior to Publication Date. Update frequency: Second and fourth Friday of each month. Spatial Reference of Source Data: NAD_1983_UTM_Zone_18N. Spatial Reference of Map Service: WGS 1984 Web Mercator Auxiliary.This feature service is available to the public.

Search
Clear search
Close search
Google apps
Main menu