Facebook
TwitterThis resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.
Facebook
TwitterNotice: this is not the latest Heat Island Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, with patching from summer of 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Facebook
TwitterThe 5m DEM is derived from the LiDAR2019B dataset (consisting of the 2018, 2019A and 2019B datasets). The 5m DEM has a vertical accuracy of 30cm. The height reference used is the SA Land Levelling Datum and the SAGEOID2010 was employed.The City of Cape Town Ground Level Map 2019 is defined in the City of Cape Town Municipal Planning Amendment By-law, 2019 as: “‘City of Cape Town Ground Level Map’ means a map approved in terms of the development management scheme, indicating the existing ground level based on floating point raster’s and a contour dataset from LiDAR information available to the City”. The Ground Level Map was approved by the City Council on the 27th July 2023.All Raster Image Services (REST):https://cityimg.capetown.gov.za/erdas-iws/esri/GeoSpatial%20Datasets/rest/services/All Raster Image Services (WMS):Use URL below to add WMS Server Connection in ArcGIS Desktop, ArcPro, QGIS, AutoCAD, etc.https://cityimg.capetown.gov.za/erdas-iws/ogc/wms/GeoSpatial Datasets?service=WMS&request=getcapabilities&For a copy or subset of this dataset, please contact the City Maps Office: city.maps@capetown.gov.zaCCT Ground Level Map: ‘How to Access’ Guide – External Users: CCT Ground Level Map: ‘How to Access’ Guide – External Users | Open Data Portal (arcgis.com)Geomatics Ground Level Map Explainer: Geomatics Ground Level Map Explainer | Open Data Portal (arcgis.com)Land Use Management Ground Level Map Explainer: Land Use Management Ground Level Map Explainer | Open Data Portal (arcgis.com)
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Summary: This repository contains spatial data files representing the density of vegetation cover within a 200 meter radius of points on a grid across the land area of New York City (NYC), New York, USA based on 2017 six-inch resolution land cover data, as well as SQL code used to carry out the analysis. The 200 meter radius was selected based on a study led by researchers at the NYC Department of Health and Mental Hygiene, which found that for a given point in the city, cooling benefits of vegetation only begin to accrue once the vegetation cover within a 200 meter radius is at least 32% (Johnson et al. 2020). The grid spacing of 100 feet in north/south and east/west directions was intended to provide granular enough detail to offer useful insights at a local scale (e.g., within a neighborhood) while keeping the amount of data needed to be processed for this manageable. The contained files were developed by the NY Cities Program of The Nature Conservancy and the NYC Environmental Justice Alliance through the Just Nature NYC Partnership. Additional context and interpretation of this work is available in a blog post.
References: Johnson, S., Z. Ross, I. Kheirbek, and K. Ito. 2020. Characterization of intra-urban spatial variation in observed summer ambient temperature from the New York City Community Air Survey. Urban Climate 31:100583. https://doi.org/10.1016/j.uclim.2020.100583
Files in this Repository: Spatial Data (all data are in the New York State Plane Coordinate System - Long Island Zone, North American Datum 1983, EPSG 2263): Points with unique identifiers (fid) and data on proportion tree canopy cover (prop_canopy), proportion grass/shrub cover (prop_grassshrub), and proportion total vegetation cover (prop_veg) within a 200 meter radius (same data made available in two commonly used formats, Esri File GeoDatabase and GeoPackage): nyc_propveg2017_200mbuffer_100ftgrid_nowater.gdb.zip nyc_propveg2017_200mbuffer_100ftgrid_nowater.gpkg Raster Data with the proportion total vegetation within a 200 meter radius of the center of each cell (pixel centers align with the spatial point data) nyc_propveg2017_200mbuffer_100ftgrid_nowater.tif Computer Code: Code for generating the point data in PostgreSQL/PostGIS, assuming the data sources listed below are already in a PostGIS database. nyc_point_buffer_vegetation_overlay.sql
Data Sources and Methods: We used two openly available datasets from the City of New York for this analysis: Borough Boundaries (Clipped to Shoreline) for NYC, from the NYC Department of City Planning, available at https://www.nyc.gov/site/planning/data-maps/open-data/districts-download-metadata.page Six-inch resolution land cover data for New York City as of 2017, available at https://data.cityofnewyork.us/Environment/Land-Cover-Raster-Data-2017-6in-Resolution/he6d-2qns All data were used in the New York State Plane Coordinate System, Long Island Zone (EPSG 2263). Land cover data were used in a polygonized form for these analyses. The general steps for developing the data available in this repository were as follows: Create a grid of points across the city, based on the full extent of the Borough Boundaries dataset, with points 100 feet from one another in east/west and north/south directions Delete any points that do not overlap the areas in the Borough Boundaries dataset. Create circles centered at each point, with a radius of 200 meters (656.168 feet) in line with the aforementioned paper (Johnson et al. 2020). Overlay the circles with the land cover data, and calculate the proportion of the land cover that was grass/shrub and tree canopy land cover types. Note, because the land cover data consistently ended at the boundaries of NYC, for points within 200 meters of Nassau and Westchester Counties, the area with land cover data was smaller than the area of the circles. Relate the results from the overlay analysis back to the associated points. Create a raster data layer from the point data, with 100 foot by 100 foot resolution, where the center of each pixel is at the location of the respective points. Areas between the Borough Boundary polygons (open water of NY Harbor) are coded as "no data." All steps except for the creation of the raster dataset were conducted in PostgreSQL/PostGIS, as documented in nyc_point_buffer_vegetation_overlay.sql. The conversion of the results to a raster dataset was done in QGIS (version 3.28), ultimately using the gdal_rasterize function.
Facebook
TwitterNotice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Facebook
TwitterNotice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
I made this dataset while performing Integrated Valuation of Ecosystem Services and Tradeoffss (InVEST) models of wetlands in India.
This dataset is a collection of Geographic Information System (GIS) data sourced from various public domains. It includes shapefiles, image raster files, etc which can are primarily developed with the aim of using with GIS software such as ArcGIS Pro, QGIS, etc. Most of the datasets are global in nature with some, like the OpenStreetMap data pertaining to India only. The data is as described below:
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
this data set contains processed multibeam sounder data from 12 dives of asterx auv performed on active faults scarps of the north anatolian fault system in the sea of marmara during the marmesonet cruise (2009). the auv carried a simrad em2000 multibeam echosounder, operating at 200 khz, and surveyed at 50 to 70 m altitude, allowing a swath width of 150-200 m. digital elevation models (dem, in meters below sealevel) and seafloor backscatter intensity mosaics (relative amplitude in db) are provided for 7 zones: tekirdağ basin w (dive 13), tekirdağ basin nw (dive 14), western high (dives 10, 11 and 12), western high e (dive 15), central high (dive 6,7,8 and 9), çınarcık basin n (dive 16), çınarcık basin s (dive 2) (see figure). the horizontal resolution and grid pixel size of the dem is 2 m. that of the backscatter intensity image is 1 m. two versions of the dem are provided. version 1 is consistent with the backscatter image. version 2 was updated applying a fofonoff correction to the depths and relocating part of the auv multibeam sounding points to fit em302 shipborne multibeam maps. version 2 depths and absolute positions are more accurate (10 m in the wgs-84 reference frame), but version 1 will give better results if the backscatter image is applied as a texture or shading on the dem. dem and backscatter raster files are provided in geotiff format (readable with arcgis 10.3 and qgis 3) and use projected cartesian coordinates. they were converted from caraibes (ifremer bathymetry and imagery processing software) output raster files with qgis using gdal translator. the coordinate reference system is a world mercator projection based on wgs-84 datum, using meter units and a standard parallel at n40° latitude (latitude of preserved scale) {proj4: +proj=merc +lon_0=0 +lat_ts=+40 +x_0=0 +y_0=0 +datum=wgs84 +units=m +no_defs}. for gis skeptics, one possible way to use these grids with generic mapping tools is to perform a reverse projection back to geographic coordinates. assuming the default proj_ellipsoid is properly set to wgs-84, the reverse projection can be applied (using gmt version 5) with the following command line:gmt grdproject auv_xxx.tif=gd -gauv_xxx.grd -jm0/40/1:1 -f -c -i -v
Facebook
TwitterReason for SelectionProtected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. Because beaches in Puerto Rico and the U.S. Virgin Islands are open to the public, beaches also provide important outdoor recreation opportunities for urban residents, so we include beaches as parks in this indicator.Input DataSoutheast Blueprint 2023 subregions: CaribbeanSoutheast Blueprint 2023 extentNational Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) Coastal Relief Model, accessed 11-22-2022Protected Areas Database of the United States (PAD-US) 3.0: VI, PR, and Marine Combined Fee EasementPuerto Rico Protected Natural Areas 2018 (December 2018 update): Terrestrial and marine protected areas (PACAT2018_areas_protegidasPR_TERRESTRES_07052019.shp, PACAT2018_areas_protegidasPR_MARINAS_07052019.shp) 2020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 3-14-2023A polygon from this dataset is considered a park if the “leisure” tag attribute is either “park” or “nature_reserve”, and considered a beach if the value in the “natural” tag attribute is “beach”. OpenStreetMap describes leisure areas as “places people go in their spare time” and natural areas as “a wide variety of physical geography, geological and landcover features”. Data were downloaded in .pbf format and translated ton an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more on the OSM copyright page. TNC Lands - Public Layer, accessed 3-8-2023U.S. Virgin Islands beaches layer (separate vector layers for St. Croix, St. Thomas, and St. John) provided by Joe Dwyer with Lynker/the NOAA Caribbean Climate Adaptation Program on 3-3-2023 (contact jdwyer@lynker.com for more information)Mapping StepsMost mapping steps were completed using QGIS (v 3.22) Graphical Modeler.Fix geometry errors in the PAD-US PR data using Fix Geometry. This must be done before any analysis is possible.Merge the terrestrial PR and VI PAD-US layers.Use the NOAA coastal relief model to restrict marine parks (marine polygons from PAD-US and Puerto Rico Protected Natural Areas) to areas shallower than 10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature.Merge into one layer the resulting shallow marine parks from marine PAD-US and the Puerto Rico Protected Natural Areas along with the combined terrestrial PAD-US parks, OpenStreetMap, TNC Lands, and USVI beaches. Omit from the Puerto Rico Protected Areas layer the “Zona de Conservación del Carso”, which has some policy protections and conservation incentives but is not formally protected.Fix geometry errors in the resulting merged layer using Fix Geometry.Intersect the resulting fixed file with the Caribbean Blueprint subregion.Process all multipart polygons to single parts (referred to in Arc software as an “explode”). This helps the indicator capture, as much as possible, the discrete units of a protected area that serve urban residents.Clip the Census urban area to the Caribbean Blueprint subregion.Select all polygons that intersect the Census urban extent within 1.2 miles (1,931 m). The 1.2 mi threshold is consistent with the average walking trip on a summer day (U.S. DOT 2002) used to define the walking distance threshold used in the greenways and trails indicator. Note: this is further than the 0.5 mi distance used in the continental version of the indicator. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used to join the parks to their buffers.Create a 1.2 mi (1,931 m) buffer ring around each park using the multiring buffer plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 1.2 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using overlap analysis. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix. This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤2% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: In the continental version of this indicator, we used a threshold of 10%. In the Caribbean version, we lowered this to 2% in order to capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Join the buffer attribute table to the previously selected parks, retaining only the parks that exceeded the 2% urban area overlap threshold while buffered. Buffer the selected parks by 15 m. Buffering prevents very small parks and narrow beaches from being left out of the indicator when the polygons are converted to raster.Reclassify the polygons into 7 classes, seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Polygon to Raster function. Assign values to the pixels in the resulting raster based on the polygon class sizes of the contiguous park areas.Clip to the Caribbean Blueprint 2023 subregion.As a final step, clip to the spatial extent of Southeast Blueprint 2023. Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator valuesIndicator values are assigned as follows:6 = 75+ acre urban park5 = >50 to <75 acre urban park4 = 30 to <50 acre urban park3 = 10 to <30 acre urban park2 = 5 to <10 acre urban park1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources. This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.This indicator includes parks and beaches from OpenStreetMap, which is a crowdsourced dataset. While members of the OpenStreetMap community often verify map features to check for accuracy and completeness, there is the potential for spatial errors (e.g., misrepresenting the boundary of a park) or incorrect tags (e.g., labelling an area as a park that is not actually a park). However, using a crowdsourced dataset gives on-the-ground experts, Blueprint users, and community members the power to fix errors and add new parks to improve the accuracy and coverage of this indicator in the future.Other Things to Keep in MindThis indicator calculates the area of each park using the park polygons from the source data. However, simply converting those park polygons to raster results in some small parks and narrow beaches being left out of the indicator. To capture those areas, we buffered parks and beaches by 15 m and applied the original area calculation to the larger buffered polygon, so as not to inflate the area by including the buffer. As a result, when the buffered polygons are rasterized, the final indicator has some areas of adjacent pixels that receive different scores. While these pixels may appear to be part of one contiguous park or suite of parks, they are scored differently because the park polygons themselves are not actually contiguous. The Caribbean version of this indicator uses a slightly different methodology than the continental Southeast version. It includes parks within a 1.2 mi distance from the Census urban area, compared to 0.5 mi in the continental Southeast. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation. Similarly, this indicator uses a 2% threshold of overlap between buffered parks and the Census urban areas, compared to a 10% threshold in the continental Southeast. This helped capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles. Finally, the Caribbean version does not use the impervious surface cutoff applied in the continental Southeast because the landcover data available in the Caribbean does not assess percent impervious in a comparable way.Disclaimer: Comparing with Older Indicator VersionsThere are numerous problems with using Southeast Blueprint
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThis resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.