Citywide raster files of annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). Description: Annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). File type is ESRI grid raster files at 300 m resolution, NAD83 New York Long Island State Plane FIPS, feet projection. Prediction surface generated from Land Use Regression modeling of December 2008- December 2019 (years 1-11) New York Community Air Survey monitoring data.As these are estimated annual average levels produced by a statistical model, they are not comparable to short term localized monitoring or monitoring done for regulatory purposes. For description of NYCCAS design and Land Use Regression Modeling process see: nyc-ehs.net/nyccas
Dataset contains information on New York City air quality surveillance data.
Air pollution is one of the most important environmental threats to urban populations and while all people are exposed, pollutant emissions, levels of exposure, and population vulnerability vary across neighborhoods. Exposures to common air pollutants have been linked to respiratory and cardiovascular diseases, cancers, and premature deaths. These indicators provide a perspective across time and NYC geographies to better characterize air quality and health in NYC. Data can also be explored online at the Environment and Health Data Portal: http://nyc.gov/health/environmentdata.
This dataset was derived from federal data collected by the Census Bureau and Environmental Protection Agency and originally made available to the public on July 31, 2024. These data provide both summary and detailed information at the Census block group level for both demographic and environmental indicators.These data were selected from the Harvard Environment and Law Data (HELD) Collection to inform environmental justice in New York State. The data was uploaded to the HELD Collection on December 3rd, 2024 and downloaded by NYSDOS-OPDCI for service to the Geographic Information Gateway via this item on March 18th, 2025. View Dataset on the Gateway
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is the dataset accompanying the publication "Big Mobility Data Reveals Hyperlocal Air Pollution Exposure Disparities in the Bronx, New York". It contains mainly three parts: 1. day-to-day air quality prediction maps for exposure estimation; 2. street-level PM2.5 exposure and its disparity modeling results for all populations and for socio-demographic groups; 3. residence- and mobility-based exposure calculation for a sample of Bronx residents.
Dataset contains information on New York City air quality surveillance data
IntroductionAir pollution poses serious health risks to humans, with particular harm to children.ObjectivesTo address the gap in understanding the efficacy of policies to reduce exposure to air pollution, we sought to assess the temporal relationship between the enactment of major air pollution and climate policies in NYC and trends in air quality during the period 1998–2021. We used previously available data from citywide monitoring and new data from the Columbia Center for Children’s Environmental Health (CCCEH) longitudinal cohort studies of mothers and children living in communities in Northern Manhattan and the South Bronx.MethodsWe utilized publicly available citywide air monitoring data for particulate matter (PM2.5) and nitrogen dioxide (NO2) from 2009 to 2021 from the New York City Community Air Survey (NYCCAS) database and CCCEH cohort data on residential exposure to PM2.5 and NO2 and personal exposure to polycyclic aromatic hydrocarbons (PAH) during pregnancies occurring from 1998–2016 and 1998–2021, respectively. We compared annual and overall reductions in PM2.5 and NO2 citywide and reductions in PAH concentrations in the cohort studies.ResultsAs previously reported, annual average concentrations of pollutants in NYC dropped significantly over time. Between 1998 and 2021, PM2.5 and NO2 concentrations were reduced citywide by 37 and 31%, respectively. In our CCCEH cohorts, between 1998 and 2016, the annual average PM2.5 and NO2 concentrations also decreased significantly by 51 and 48%, respectively. Between 1998 and 2020, PAH concentrations decreased significantly by 66%.Discussion/conclusionWhile it is not possible to link improved air quality to a single policy, our analysis provides evidence of a cumulative beneficial effect of clean air and climate policies enacted between 1998 and 2021 both city-wide and in our cohorts residing in communities that have been disproportionately affected by air pollution. There are important implications for health benefits, particularly for children, who are known to be especially vulnerable to these exposures. The results support further environmental and social policy changes to prevent the serious health impacts of air pollution from fossil fuel emissions.
NARSTO_EPA_SS_NEW_YORK_AIR_CHEM_PM_MET_DATA is the North American Research Strategy for Tropospheric Ozone (NARSTO) Environmental Protection Agency (EPA) Supersite (SS) New York Air Chemistry, Particulate Matter, and Meteorological Data. It was collected between 2001 and 2006 during the PM2.5 Technology Assessment and Characterization Study in New York State (PMTACS-NY). Data files from all components of the PMTACS-NY Supersite program are archived in this single data set. The PMTACS-NY Supersite program provided a unique and unparalleled opportunity to enhance our understanding of ozone/PM2.5-precursor relationships and track progress in current precursor emission control programs and assess their effectiveness in achieving expected air quality responses. The impact of this research is highly significant, providing a sound scientific basis for informed effective decisions in the management of air quality in New York and significant benefit to its citizens - both environmentally and economically. The U.S. EPA Particulate Matter (PM) Supersites Program was an ambient air monitoring research program designed to provide information of value to the atmospheric sciences, and human health and exposure research communities. Eight geographically diverse projects were chosen to specifically address these EPA research priorities: (1) to characterize PM, its constituents, precursors, co-pollutants, atmospheric transport, and its source categories that affect the PM in any region; (2) to address the research questions and scientific uncertainties about PM source-receptor and exposure-health effects relationships; and (3) to compare and evaluate different methods of characterizing PM including testing new and emerging measurement methods.NARSTO, which has since disbanded, was a public/private partnership, whose membership spanned across government, utilities, industry, and academe throughout Mexico, the United States, and Canada. The primary mission was to coordinate and enhance policy-relevant scientific research and assessment of tropospheric pollution behavior; activities provide input for science-based decision-making and determination of workable, efficient, and effective strategies for local and regional air-pollution management. Data products from local, regional, and international monitoring and research programs are still available.
LISTOS_Ground_Other_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at a collection of ground sites during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO. LISTOS_Ground_Other_Data are data collected at other/miscellaneous ground sites during the LISTOS campaign.
Dataset contains information on New York City air quality surveillance data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States AQI: New York: Buffalo-Cheektowaga-Niagara Falls data was reported at 54.000 Index in 16 May 2025. This records an increase from the previous number of 44.000 Index for 15 May 2025. United States AQI: New York: Buffalo-Cheektowaga-Niagara Falls data is updated daily, averaging 41.000 Index from Jan 1980 (Median) to 16 May 2025, with 16569 observations. The data reached an all-time high of 176.000 Index in 07 Jun 2023 and a record low of 15.000 Index in 03 Oct 2019. United States AQI: New York: Buffalo-Cheektowaga-Niagara Falls data remains active status in CEIC and is reported by United States Environmental Protection Agency. The data is categorized under Global Database’s United States – Table US.ESG.E: Air Quality Index and Air Pollutants. [COVID-19-IMPACT]
All 311 Service Requests from 2010 to present. This information is automatically updated daily.
The New York City (NYC) Community Air Survey (NYCCAS) is a study of street level air pollution across NYC neighborhoods. Measurements are taken at 150 locations throughout NYC each season of the year. This downloadable set contains CSV data, metadata, and reports from the survey
LISTOS_Ground_BronxPfizer_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Bronx Pfizer ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS_Ground_Rutgers_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) Rutgers ground site data collected during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS_Ground_FlaxPond_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Flax Pond ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.
The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS_Ground_CCNY_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the CCNY ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.
The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS_Ground_QueensCollege_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Queens College ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS_Ground_YaleCoastal_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Yale Coastal ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS_Ground_Hammonasset_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Hammonasset ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States AQI: New York-New Jersey-Pennsylvania: New York-Newark-Jersey City: PM2.5 data was reported at 65.000 Index in 16 May 2025. This records an increase from the previous number of 57.000 Index for 15 May 2025. United States AQI: New York-New Jersey-Pennsylvania: New York-Newark-Jersey City: PM2.5 data is updated daily, averaging 48.000 Index from Jan 1999 (Median) to 16 May 2025, with 9476 observations. The data reached an all-time high of 278.000 Index in 07 Jun 2023 and a record low of 12.000 Index in 09 May 2020. United States AQI: New York-New Jersey-Pennsylvania: New York-Newark-Jersey City: PM2.5 data remains active status in CEIC and is reported by United States Environmental Protection Agency. The data is categorized under Global Database’s United States – Table US.ESG.E: Air Quality Index and Air Pollutants. [COVID-19-IMPACT]
Citywide raster files of annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). Description: Annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). File type is ESRI grid raster files at 300 m resolution, NAD83 New York Long Island State Plane FIPS, feet projection. Prediction surface generated from Land Use Regression modeling of December 2008- December 2019 (years 1-11) New York Community Air Survey monitoring data.As these are estimated annual average levels produced by a statistical model, they are not comparable to short term localized monitoring or monitoring done for regulatory purposes. For description of NYCCAS design and Land Use Regression Modeling process see: nyc-ehs.net/nyccas