Facebook
TwitterDifferent countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Facebook
TwitterThe 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.
National
Sample survey data
SAMPLE DESIGN AND IMPLEMENTATION
The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.
The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.
UPDATING OF SAMPLING FRAME
Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).
The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.
Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.
Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.
A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract This paper contributes to the existing literature by reviewing the research methodology and the literature review with the focus on potential applications for the novelty technology of the single platform E-payment. These included, but were not restricted to the subjects, population, sample size requirement, data collection method and measurement of variables, pilot study and statistical techniques for data analysis. The reviews will shed some light and potential applications for future researchers, students and others to conceptualize, operationalize and analyze the underlying research methodology to assist in the development of their research methodology.
Facebook
TwitterThe study included four separate surveys:
The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together.
The LSMS survey of general population of Serbia in 2003 (panel survey)
The survey of Roma from Roma settlements in 2003 These two datasets are published together separately from the 2002 datasets.
Objectives
LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.
The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).
Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]
Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.
The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).
Sample survey data [ssd]
Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.
The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.
The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.
Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.
Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.
Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.
The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was,as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.
Face-to-face [f2f]
In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).
During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.
In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households or
Facebook
TwitterA data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Combined Locks population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Combined Locks across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Combined Locks was 3,654, a 0.11% decrease year-by-year from 2022. Previously, in 2022, Combined Locks population was 3,658, an increase of 0.83% compared to a population of 3,628 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Combined Locks increased by 1,198. In this period, the peak population was 3,658 in the year 2022. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Combined Locks Population by Year. You can refer the same here
Facebook
TwitterTHE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE NATIONAL INSTITUTE OF STATISTICS (INS) - TUNISIA
The survey aims at estimating the demographic and educational characteristics of the population. It also calculates the economic indicators of the population such as the number of active individuals, the additional demand for jobs, the number of employed and their characteristics, the number of jobs created, the characteristics of the unemployed and the unemployment rate. Furthermore, this survey estimates these indicators on the household level and their living conditions.
The results of this survey were compared with the results of the second quarter of the national survey on population and employment 2011. It should also be noted that the National Institute of Statistics -Tunisia uses the unemployment definition and concepts adopted by the International Labour Organization. This definition implies that, the individual did not work during the week preceding the day of the interview, was looking for a job in the month preceding the date of the interview, is available to work within two weeks after the day of the interview.
In 2010, the National Institute of Statistics has adopted a strict ILO definition for unemployment, by conditioning that the person must perform effective approaches to search for a job in the month preceding the day of the interview.
Covering a representative sample at the national and regional level (governorates).
1- Household/family. 2- Individual/person.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE NATIONAL INSTITUTE OF STATISTICS - TUNISIA (INS)
The sample is drawn from the frame of the 2004 General Census of Population and Housing.
Face-to-face [f2f]
Three modules were designed for data collection:
Household Questionnaire (Module 1): Includes questions regarding household characteristics, living conditions, individuals and their demographic, educational and economic characteristics. This module also provides information on internal and external migration.
Active Employed Questionnaire (Module 2): Includes questions regarding the characteristics of the employed individuals as occupation, industry and wages for employees.
Active Unemployed Questionnaire (Module 3): Includes questions regarding the characteristics of the unemployed as unemployment duration, the last occupation, activity, and the number of days worked during the last year...etc.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, sample and sub-sample sizes for scientific areas in EXP1.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Psychological and brain science explore human behavior and the human brain by studying volunteers who participate in these studies. Given that the mind and behavior of participants are influenced by their own biological and social factors, the generalizability of findings in these fields largely depends on the representativeness of samples. However, the representativeness of samples in psychological and brain science has long been criticized as “WEIRD” (Western, Educated, Industrialized, Rich, and Democratic). In recent years, several meta-researches have surveyed the representativeness of samples in published studies from different sub-fields, but an overall understanding of the representativeness of samples in psychological and brain science is lacking. In this review, we analyze these meta-researches to provide a comprehensive perspective on the current state of sample representativeness. Two common issues emerged across these meta-researches. Firstly, the demographics of participants were incomplete in most of the published studies. Most psychological and brain science studies reported participants' gender, age, and country, but participants' race/ethnicity, education level, and socioeconomic status were far less reported. Other important demographics, such as rural/urban division, were not reported at all. Additionally, the reporting of these demographics has increased only slightly in recent years compared to decades ago. Thus, the under-reporting of demographic information in literature was largely unchanged. Secondly, based on the reported demographics, we found that samples in the field are far from being representative of the world population: most participants are young, highly educated Caucasian females in Western countries; middle-aged and older, less educated, colored people in and outside Western countries are less likely to be studied. In terms of countries, Southeast Asian, African, Latin American, and Middle Eastern countries appear fewer in psychological and brain science research.These two issues may be due to the following reasons: convenience sampling dominates psychological and brain science; Western researchers dominate the field of psychology and brain science, with most of the editors-in-chief, editorial board members, and authors coming from Europe and America; psychology and brain science undervalued the effect of socioeconomic and cultural factors; and researchers mistakenly believe that findings from Western participants can be generalized to all human beings. Addressing the issue of sample representativeness in psychological and brain sciences requires a concerted effort by researchers, academic societies, journals, and funding agencies: Researchers should collect and report detailed demographic information about participants, state the limitations of generalizability, and use sampling methods that can increase representativeness whenever possible (e.g., probability sampling); academic societies should pay attention to the representativeness issues by organizing more academic symposium or workshops on this topic; journals should increase the representativeness of editorial board members and encourage more rigorous research with samples from underrepresented groups or studies that examine the generalizability of important findings; funding agencies can encourage researchers to pay more attention to study groups from underrepresented countries, and provide financial support for studying hard-to-research population. Improving sample representativeness will enhance the value of applying psychological and brain science knowledge in real-life settings and promote the building of a community with a shared future for mankind.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
I explore the sample size in qualitative research that is required to reach theoretical saturation. I conceptualize a population as consisting of sub-populations that contain different types of information sources that hold a number of codes. Theoretical saturation is reached after all the codes in the population have been observed once in the sample. I delineate three different scenarios to sample information sources: “random chance,” which is based on probability sampling, “minimal information,” which yields at least one new code per sampling step, and “maximum information,” which yields the largest number of new codes per sampling step. Next, I use simulations to assess the minimum sample size for each scenario for systematically varying hypothetical populations. I show that theoretical saturation is more dependent on the mean probability of observing codes than on the number of codes in a population. Moreover, the minimal and maximal information scenarios are significantly more efficient than random chance, but yield fewer repetitions per code to validate the findings. I formulate guidelines for purposive sampling and recommend that researchers follow a minimum information scenario.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/7756/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7756/terms
This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Lebanon population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Lebanon across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Lebanon was 182, a 0.55% increase year-by-year from 2022. Previously, in 2022, Lebanon population was 181, a decline of 0% compared to a population of 181 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Lebanon decreased by 120. In this period, the peak population was 302 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lebanon Population by Year. You can refer the same here
Facebook
TwitterThe Bangladesh Demographic and Health Survey (BDHS) is part of the worldwide Demographic and Health Surveys program, which is designed to collect data on fertility, family planning, and maternal and child health.
The BDHS is intended to serve as a source of population and health data for policymakers and the research community. In general, the objectives of the BDHS are to: - assess the overall demographic situation in Bangladesh, - assist in the evaluation of the population and health programs in Bangladesh, and - advance survey methodology.
More specifically, the objective of the BDHS is to provide up-to-date information on fertility and childhood mortality levels; nuptiality; fertility preferences; awareness, approval, and use of family planning methods; breastfeeding practices; nutrition levels; and maternal and child health. This information is intended to assist policymakers and administrators in evaluating and designing programs and strategies for improving health and family planning services in the country.
National
Sample survey data
Bangladesh is divided into six administrative divisions, 64 districts (zillas), and 490 thanas. In rural areas, thanas are divided into unions and then mauzas, a land administrative unit. Urban areas are divided into wards and then mahallas. The 1996-97 BDHS employed a nationally-representative, two-stage sample that was selected from the Integrated Multi-Purpose Master Sample (IMPS) maintained by the Bangladesh Bureau of Statistics. Each division was stratified into three groups: 1 ) statistical metropolitan areas (SMAs), 2) municipalities (other urban areas), and 3) rural areas. 3 In the rural areas, the primary sampling unit was the mauza, while in urban areas, it was the mahalla. Because the primary sampling units in the IMPS were selected with probability proportional to size from the 1991 Census frame, the units for the BDHS were sub-selected from the IMPS with equal probability so as to retain the overall probability proportional to size. A total of 316 primary sampling units were utilized for the BDHS (30 in SMAs, 42 in municipalities, and 244 in rural areas). In order to highlight changes in survey indicators over time, the 1996-97 BDHS utilized the same sample points (though not necessarily the same households) that were selected for the 1993-94 BDHS, except for 12 additional sample points in the new division of Sylhet. Fieldwork in three sample points was not possible (one in Dhaka Cantonment and two in the Chittagong Hill Tracts), so a total of 313 points were covered.
Since one objective of the BDHS is to provide separate estimates for each division as well as for urban and rural areas separately, it was necessary to increase the sampling rate for Barisal and Sylhet Divisions and for municipalities relative to the other divisions, SMAs and rural areas. Thus, the BDHS sample is not self-weighting and weighting factors have been applied to the data in this report.
Mitra and Associates conducted a household listing operation in all the sample points from 15 September to 15 December 1996. A systematic sample of 9,099 households was then selected from these lists. Every second household was selected for the men's survey, meaning that, in addition to interviewing all ever-married women age 10-49, interviewers also interviewed all currently married men age 15-59. It was expected that the sample would yield interviews with approximately 10,000 ever-married women age 10-49 and 3,000 currently married men age 15-59.
Note: See detailed in APPENDIX A of the survey report.
Face-to-face
Four types of questionnaires were used for the BDHS: a Household Questionnaire, a Women's Questionnaire, a Men' s Questionnaire and a Community Questionnaire. The contents of these questionnaires were based on the DHS Model A Questionnaire, which is designed for use in countries with relatively high levels of contraceptive use. These model questionnaires were adapted for use in Bangladesh during a series of meetings with a small Technical Task Force that consisted of representatives from NIPORT, Mitra and Associates, USAID/Bangladesh, the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Population Council/Dhaka, and Macro International Inc (see Appendix D for a list of members). Draft questionnaires were then circulated to other interested groups and were reviewed by the BDHS Technical Review Committee (see Appendix D for list of members). The questionnaires were developed in English and then translated into and printed in Bangla (see Appendix E for final version in English).
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.
The Women's Questionnaire was used to collect information from ever-married women age 10-49. These women were asked questions on the following topics: - Background characteristics (age, education, religion, etc.), - Reproductive history, - Knowledge and use of family planning methods, - Antenatal and delivery care, - Breastfeeding and weaning practices, - Vaccinations and health of children under age five, - Marriage, - Fertility preferences, - Husband's background and respondent's work, - Knowledge of AIDS, - Height and weight of children under age five and their mothers.
The Men's Questionnaire was used to interview currently married men age 15-59. It was similar to that for women except that it omitted the sections on reproductive history, antenatal and delivery care, breastfeeding, vaccinations, and height and weight. The Community Questionnaire was completed for each sample point and included questions about the existence in the community of income-generating activities and other development organizations and the availability of health and family planning services.
A total of 9,099 households were selected for the sample, of which 8,682 were successfully interviewed. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants had left for an extended period at the time they were visited by the interviewing teams. Of the 8,762 households occupied, 99 percent were successfully interviewed. In these households, 9,335 women were identified as eligible for the individual interview (i.e., ever-married and age 10-49) and interviews were completed for 9,127 or 98 percent of them. In the half of the households that were selected for inclusion in the men's survey, 3,611 eligible ever-married men age 15-59 were identified, of whom 3,346 or 93 percent were interviewed.
The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was low.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the BDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the BDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the BDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the BDHS is the ISSA Sampling Error Module. This module used the Taylor
Facebook
TwitterDemographic distribution of the target population and the study sample.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/8210/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8210/terms
The Public Use Microdata Samples (PUMS) contain person- and household-level information from the "long-form" questionnaires distributed to a sample of the population enumerated in the 1980 Census. The A Sample identifies every state, county groups, and most individual counties with 100,000 or more inhabitants (350 in all). In many cases, individual cities or groups of places with 100,000 or more inhabitants are also identified. As a percentage of the 5-Percent Public Use Microdata Sample (A Sample) [CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: PUBLIC USE MICRODATA SAMPLE (A SAMPLE): 5-PERCENT SAMPLE (ICPSR 8101)], this file constitutes a 1-in-1000 sample, and contains all household- and person-level variables from the original A Sample. Household-level variables include housing tenure, year structure was built, number and types of rooms in dwelling, plumbing facilities, heating equipment, taxes and mortgage costs, number of children, and household and family income. Person-level variables include sex, age, marital status, race, Spanish origin, income, occupation, transportation to work, and education.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.
Key observations
The largest age group in Excel, AL was for the group of age 5 to 9 years years with a population of 77 (15.28%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.40%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Change in Three Population Estimates and Personal Network Size over the Original and MoS Estimator.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/8236/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8236/terms
The 1940 Census Public Use Microdata Sample Project was assembled through a collaborative effort between the United States Bureau of the Census and the Center for Demography and Ecology at the University of Wisconsin. The collection contains a stratified 1-percent sample of households, with separate records for each household, for each "sample line" respondent, and for each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1940 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), standard metropolitan areas (SMAs), and state economic areas (SEAs). Accompanying the data collection is a codebook that includes an abstract, descriptions of sample design, processing procedures and file structure, a data dictionary (record layout), category code lists, and a glossary. Also included is a procedural history of the 1940 Census. Each of the 20 subsamples contains three record types: household, sample line, and person. Household variables describe the location and condition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, wage deductions for Social Security, and occupation. Person records also contain variables describing demographic characteristics including nativity, marital status, family membership, education, employment status, income, and occupation.
Facebook
Twitteranalyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
Facebook
TwitterDifferent countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which