100+ datasets found
  1. g

    Population projection components of change by local authority and year, 2018...

    • statswales.gov.wales
    Updated Mar 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Population projection components of change by local authority and year, 2018 to 2043 [Dataset]. https://statswales.gov.wales/Catalogue/Population-and-Migration/Population/Projections/Local-Authority/2018-based/populationprojectioncomponentsofchange-by-localauthority-year
    Explore at:
    Dataset updated
    Mar 2020
    Description

    This dataset provides the components of change involved in the calculation of the population projections for local authorities in Wales. Data cover the change between each successive projection year and relate to the change from the middle of each year to the middle of the following year. The first year's data represent the change from the base year of mid-2018 to mid-2019, through the projection period to show the change for mid-2042 to mid-2043. This is the fifth set of population projections published for the 22 local authorities in Wales. Note that the projections become increasingly uncertain the further we try to look into the future.

  2. Calculation File Uploaded-AAJ_JS-14741.xlsx

    • figshare.com
    xlsx
    Updated Jun 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jayachandran A A (2023). Calculation File Uploaded-AAJ_JS-14741.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.23577831.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 26, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jayachandran A A
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data contains 2022 world population data publised by the UN DESA for six most populous countries of the world. File also contains the analysis of decomposition of demographic indicators on population growth.

  3. v

    Calculating most probable absolute population density and its 95% confidence...

    • data.lib.vt.edu
    txt
    Updated Apr 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ksenia S. Onufrieva; Alexey V. Onufriev (2021). Calculating most probable absolute population density and its 95% confidence bounds [Dataset]. http://doi.org/10.7294/be34-zs61
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 20, 2021
    Dataset provided by
    University Libraries, Virginia Tech
    Authors
    Ksenia S. Onufrieva; Alexey V. Onufriev
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Step by step instructions to calculating most probable absolute population density and its 95% confidence bounds.

  4. f

    Correcting for unequal catchability in sex ratio and population size...

    • plos.figshare.com
    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Donald T. McKnight; Day B. Ligon (2023). Correcting for unequal catchability in sex ratio and population size estimates [Dataset]. http://doi.org/10.1371/journal.pone.0184101
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Donald T. McKnight; Day B. Ligon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Wildlife populations often exhibit unequal catchability between subgroups such as males and females. This heterogeneity of capture probabilities can bias both population size and sex ratio estimates. Several authors have suggested that this problem can be overcome by treating males and females as separate populations and calculating a population estimate for each of them. However, this suggestion has received little testing, and many researchers do not implement it. Therefore, we used two simulations to test the utility of this method. One simulated a closed population, while the other simulated an open population and used the robust design to calculate population sizes. We tested both simulations with multiple levels of heterogeneity, and we used a third simulation to test several methods for detecting heterogeneity of capture probabilities. We found that treating males and females as separate populations produced more accurate population and sex ratio estimates. The benefits of this method were particularly pronounced for sex ratio estimates. When males and females were included as a single population, the sex ratio estimates became inaccurate when even slight heterogeneity was present, but when males and females were treated separately, the estimates were accurate even when large biases were present. Nevertheless, treating males and females separately reduced precision, and this method may not be appropriate when capture and recapture rates are low. None of the methods for detecting heterogeneity were robust, and we do not recommend that researchers rely on them. Rather, we suggest separating populations by sex, age, or other subgroups whenever sample sizes permit.

  5. d

    Data from: Population dynamics of an invasive forest insect and associated...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion [Dataset]. https://catalog.data.gov/dataset/data-from-population-dynamics-of-an-invasive-forest-insect-and-associated-natural-enemies--cb1db
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    Datasets archived here consist of all data analyzed in Duan et al. 2015 from Journal of Applied Ecology. Specifically, these data were collected from annual sampling of emerald ash borer (Agrilus planipennis) immature stages and associated parasitoids on infested ash trees (Fraxinus) in Southern Michigan, where three introduced biological control agents had been released between 2007 - 2010. Detailed data collection procedures can be found in Duan et al. 2012, 2013, and 2015. Resources in this dataset:Resource Title: Duan J Data on EAB larval density-bird predation and unknown factor from Journal of Applied Ecology. File Name: Duan J Data on EAB larval density-bird predation and unknown factor from Journal of Applied Ecology.xlsxResource Description: This data set is used to calculate mean EAB density (per m2 of ash phloem area), bird predation rate and mortality rate caused by unknown factors and analyzed with JMP (10.2) scripts for mixed effect linear models in Duan et al. 2015 (Journal of Applied Ecology).Resource Title: DUAN J Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology. File Name: DUAN J Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology.xlsxResource Description: This data set is used to construct life tables and calculation of net population growth rate of emerald ash borer for each site. The net population growth rates were then analyzed with JMP (10.2) scripts for mixed effect linear models in Duan et al. 2015 (Journal of Applied Ecology).Resource Title: DUAN J Data on EAB Life Tables Calculation from Journal of Applied Ecology. File Name: DUAN J Data on EAB Life Tables Calculation from Journal of Applied Ecology.xlsxResource Description: This data set is used to calculate parasitism rate of EAB larvae for each tree and then analyzed with JMP (10.2) scripts for mixed effect linear models on in Duan et al. 2015 (Journal of Applied Ecology).Resource Title: READ ME for Emerald Ash Borer Biocontrol Study from Journal of Applied Ecology. File Name: READ_ME_for_Emerald_Ash_Borer_Biocontrol_Study_from_Journal_of_Applied_Ecology.docxResource Description: Additional information and definitions for the variables/content in the three Emerald Ash Borer Biocontrol Study tables: Data on EAB Life Tables Calculation Data on EAB larval density-bird predation and unknown factor Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology Resource Title: Data Dictionary for Emerald Ash Borer Biocontrol Study from Journal of Applied Ecology. File Name: AshBorerAnd Parasitoids_DataDictionary.csvResource Description: CSV data dictionary for the variables/content in the three Emerald Ash Borer Biocontrol Study tables: Data on EAB Life Tables Calculation Data on EAB larval density-bird predation and unknown factor Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology Fore more information see the related READ ME file.

  6. Population Estimates: Census Bureau Version: Components of Change Estimates

    • catalog.data.gov
    • datasets.ai
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Population Estimates: Census Bureau Version: Components of Change Estimates [Dataset]. https://catalog.data.gov/dataset/population-estimates-census-bureau-version-components-of-change-estimates
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates, Estimated Components of Resident Population Change, and Rates of the Components of Resident Population Change; for the United States, States, Metropolitan Statistical Areas, Micropolitan Statistical Areas, Counties, and Puerto Rico: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through March. // Note: Total population change includes a residual. This residual represents the change in population that cannot be attributed to any specific demographic component. // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // The Office of Management and Budget's statistical area delineations for metropolitan, micropolitan, and combined statistical areas, as well as metropolitan divisions, are those issued by that agency in September 2018. // Current data on births, deaths, and migration are used to calculate population change since the 2010 Census. An annual time series of estimates is produced, beginning with the census and extending to the vintage year. The vintage year (e.g., Vintage 2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.

  7. f

    Global human population (millions of people), 1–2012 CE.1

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron Jonas Stutz (2023). Global human population (millions of people), 1–2012 CE.1 [Dataset]. http://doi.org/10.1371/journal.pone.0105291.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Aaron Jonas Stutz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1Historical estimates for 1–1950 CE are from refs. [72]–[78]. The UN global census data for 1955–2012 is from ref. [24], which provides an open-access web-based summary of these data. The historical world population estimates are also summarized by Cohen [23] in his Appendix 2. Note that the average population values—which are used to calculate (the distance for a given model population trajectory from the average population estimate/census value for the 1750–2012 data)—exclude duplicate estimates, in which a later study relies on an earlier study's result (e.g., Kremer's extensive use of the earlier estimates from McEvedy & Jones [74], [77]).

  8. i

    Estimating the Size of Populations through a Household Survey 2011 - Rwanda

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Oct 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rwanda Biomedical Center/ Institute of HIV/AIDS, Disease Prevention and Control Department (RBC/IHDPC) (2017). Estimating the Size of Populations through a Household Survey 2011 - Rwanda [Dataset]. https://catalog.ihsn.org/index.php/catalog/7192
    Explore at:
    Dataset updated
    Oct 10, 2017
    Dataset authored and provided by
    Rwanda Biomedical Center/ Institute of HIV/AIDS, Disease Prevention and Control Department (RBC/IHDPC)
    Time period covered
    2011
    Area covered
    Rwanda
    Description

    Abstract

    The Estimating the Size of Populations through a Household Survey (EPSHS), sought to assess the feasibility of the network scale-up and proxy respondent methods for estimating the sizes of key populations at higher risk of HIV infection and to compare the results to other estimates of the population sizes. The study was undertaken based on the assumption that if these methods proved to be feasible with a reasonable amount of data collection for making adjustments, countries would be able to add this module to their standard household survey to produce size estimates for their key populations at higher risk of HIV infection. This would facilitate better programmatic responses for prevention and caring for people living with HIV and would improve the understanding of how HIV is being transmitted in the country.

    The specific objectives of the ESPHS were: 1. To assess the feasibility of the network scale-up method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 2. To assess the feasibility of the proxy respondent method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 3. To estimate the population size of MSM, FSW, IDU, and clients of sex workers in Rwanda at a national level; 4. To compare the estimates of the sizes of key populations at higher risk for HIV produced by the network scale-up and proxy respondent methods with estimates produced using other methods; and 5. To collect data to be used in scientific publications comparing the use of the network scale-up method in different national and cultural environments.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Individual

    Sampling procedure

    The Estimating the Size of Populations through a Household Survey (ESPHS) used a two-stage sample design, implemented in a representative sample of 2,125 households selected nationwide in which all women and men age 15 years and above where eligible for an individual interview. The sampling frame used was the preparatory frame for the Rwanda Population and Housing Census (RPHC), which was conducted in 2012; it was provided by the National Institute of Statistics of Rwanda (NISR).

    The sampling frame was a complete list of natural villages covering the whole country (14,837 villages). Two strata were defined: the city of Kigali and the rest of the country. One hundred and thirty Primary Sampling Units (PSU) were selected from the sampling frame (35 in Kigali and 95 in the other stratum). To reduce clustering effect, only 20 households were selected per cluster in Kigali and 15 in the other clusters. As a result, 33 percent of the households in the sample were located in Kigali.

    The list of households in each cluster was updated upon arrival of the survey team in the cluster. Once the listing had been updated, a number was assigned to each existing household in the cluster. The supervisor then identified the households to be interviewed in the survey by using a table in which the households were randomly pre-selected. This table also provided the list of households pre-selected for each of the two different definitions of what it means "to know" someone.

    For further details on sample design and implementation, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Estimating the Size of Populations through a Household Survey (ESPHS) used two types of questionnaires: a household questionnaire and an individual questionnaire. The same individual questionnaire was used to interview both women and men. In addition, two versions of the individual questionnaire were developed, using two different definitions of what it means “to know” someone. Each version of the individual questionnaire was used in half of the selected households.

    Cleaning operations

    The processing of the ESPHS data began shortly after the fieldwork commenced. Completed questionnaires were returned periodically from the field to the SPH office in Kigali, where they were entered and checked for consistency by data processing personnel who were specially trained for this task. Data were entered using CSPro, a programme specially developed for use in DHS surveys. All data were entered twice (100 percent verification). The concurrent processing of the data was a distinct advantage for data quality, because the School of Public Health had the opportunity to advise field teams of problems detected during data entry. The data entry and editing phase of the survey was completed in late August 2011.

    Response rate

    A total of 2,125 households were selected in the sample, of which 2,120 were actually occupied at the time of the interview. The number of occupied households successfully interviewed was 2,102, yielding a household response rate of 99 percent.

    From the households interviewed, 2,629 women were found to be eligible and 2,567 were interviewed, giving a response rate of 98 percent. Interviews with men covered 2,102 of the eligible 2,149 men, yielding a response rate of 98 percent. The response rates do not significantly vary by type of questionnaire or residence.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made to minimize this type of error during the implementation of the Rwanda ESPHS 2011, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ESPHS 2011 is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the ESPHS 2011 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the ESPHS 2011 is a SAS program. This program uses the Taylor linearization method for variance estimation for survey estimates that are means or proportions.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey report.

  9. W

    The impact of calculating cancer incidence rates using the 2013 European...

    • cloud.csiss.gmu.edu
    • data.wu.ac.at
    html
    Updated Dec 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Kingdom (2019). The impact of calculating cancer incidence rates using the 2013 European Standard Population [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/the_impact_of_calculating_cancer_incidence_rates_using_the_2013_european_standard_population
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 25, 2019
    Dataset provided by
    United Kingdom
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Area covered
    Europe
    Description

    This short story examines the impact of applying the new 2013 European Standard Population (ESP) to calculate age-standardised cancer incidence rates. This document focuses solely on the impact of applying the new methods to previously published cancer incidence data for 2011. Starting from this reporting year (2014/15), ONS outputs containing cancer incidence data will use the revised age-standardisation method.

    Source agency: Office for National Statistics

    Designation: National Statistics

    Language: English

    Alternative title: The impact of calculating cancer incidence rates using the 2013 ESP

  10. Bridged Race 2000 and 2001 Population Estimates for Calculating Vital Rates:...

    • icpsr.umich.edu
    ascii, sas, spss +1
    Updated Aug 18, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Health and Human Services. National Center for Health Statistics (2011). Bridged Race 2000 and 2001 Population Estimates for Calculating Vital Rates: [United States] [Dataset]. http://doi.org/10.3886/ICPSR03671.v2
    Explore at:
    stata, spss, sas, asciiAvailable download formats
    Dataset updated
    Aug 18, 2011
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Health and Human Services. National Center for Health Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/3671/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3671/terms

    Time period covered
    2000
    Area covered
    United States
    Description

    These data are bridged resident population estimates for 2000 and 2001 based on the Census 2000 counts. The estimates result from bridging the 31 race categories used in Census 2000, as specified in the 1997 Office of Management and Budget standards for the collection of data on race and ethnicity, to the four race categories specified under the 1977 standards. The bridged estimates were produced under a collaborative arrangement with the United States Bureau of the Census. Three data files are provided. The first file (Part 1) contains bridged April 1, 2000, population counts for the four race groups (White, Black or African American, American Indian or Alaska Native, Asian or Pacific Islander) by county, single year of age, sex, and Hispanic origin. The other two data files (Parts 2 and 3) contain bridged postcensal estimates of the July 1, 2000, and July 1, 2001, resident populations of the United States for the four race groups by single year of age, sex, and Hispanic origin. Parts 4-8 are Excel files presenting various crosstabulations.

  11. Data from: Importance of accounting for imperfect detection of plants in the...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Jul 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jorge A. Martínez-Villegas; Irene Pisanty; Carlos Martorell; Mariana Hernández-Apolinar; Teresa Valverde; Luisa A. Granados-Hernández; Mariana Rodríguez-Sánchez; Jaime J. Zuñiga-Vega (2024). Importance of accounting for imperfect detection of plants in the estimation of population growth rates [Dataset]. http://doi.org/10.5061/dryad.b5mkkwhnk
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 29, 2024
    Dataset provided by
    Universidad Nacional Autónoma de México
    Authors
    Jorge A. Martínez-Villegas; Irene Pisanty; Carlos Martorell; Mariana Hernández-Apolinar; Teresa Valverde; Luisa A. Granados-Hernández; Mariana Rodríguez-Sánchez; Jaime J. Zuñiga-Vega
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Detection of plant individuals is imperfect. Not accounting for this issue can result in biased estimates of demographic parameters as important as population growth rates. In mobile organisms, a common practice is to explicitly account for detection probability during the estimation of most demographic parameters, but no study in plant populations has examined the consequences of ignoring imperfect detectability on the estimation of population growth rates. The lack of accounting for detection probability occurs because plant demographers have frequently assumed that detection is perfect, and because there is a scarcity of studies that formally compare the performance of estimation methods that incorporate detection probabilities with respect to methods that ignore detectabilities. Based on field data of five plant species and data simulations, we compared the performance of three methods that estimate population growth rates, two that do not estimate detection probabilities (direct counts of individuals and the minimum-number-alive method) and the other that explicitly accounts for detection probabilities (temporal symmetry models). Our aims were (1) to estimate detection probabilities, and (2) to evaluate the performance of these three methods by calculating bias, accuracy, and precision in their estimates of population growth rates. Our five plant species had imperfect detection. Estimates of population growth rates that explicitly incorporate detectabilities had better performance (less biased estimates, with higher accuracy and precision) than those obtained with the two methods that do not calculate detection probabilities. In these latter methods, bias increases as detection probability decreases. Our findings highlight the importance of using robust analytical methods that account for detection probability of plants during the estimation of critical demographic parameters such as population growth rates. In this way, estimates of plant population parameters will reliably indicate their actual status and quantitative trends.

  12. d

    Global contemporary effective population sizes across taxonomic groups

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser (2024). Global contemporary effective population sizes across taxonomic groups [Dataset]. http://doi.org/10.5061/dryad.p2ngf1vzm
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    Dryad
    Authors
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser
    Description

    Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential, respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 unique populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal, and amphibian populations had a <54% probability of reaching = 50 and a <9% probability of reaching = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smal...

  13. I

    Italy IT: Survey Mean Consumption or Income per Capita: Bottom 40% of...

    • ceicdata.com
    Updated Oct 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). Italy IT: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate [Dataset]. https://www.ceicdata.com/en/italy/poverty/it-survey-mean-consumption-or-income-per-capita-bottom-40-of-population-annualized-average-growth-rate
    Explore at:
    Dataset updated
    Oct 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2014
    Area covered
    Italy
    Description

    Italy IT: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -2.130 % in 2015. Italy IT: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -2.130 % from Dec 2015 (Median) to 2015, with 1 observations. Italy IT: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Italy – Table IT.World Bank: Poverty. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.

  14. T

    Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Apr 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xml, csv, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 7, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  15. Vintage 2018 Population Estimates: Demographic Characteristics Estimates by...

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Vintage 2018 Population Estimates: Demographic Characteristics Estimates by Age Groups [Dataset]. https://catalog.data.gov/dataset/vintage-2018-population-estimates-demographic-characteristics-estimates-by-age-groups
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.

  16. f

    Sample size calculation with double population proportion formula using...

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gojjam Eshetie Ewunetie; Mamo Dereje Alemu; Muluken Genetu Chanie (2023). Sample size calculation with double population proportion formula using Epi-info version 7 for the unmet need of modern FP in South Gondar, Ethiopia, 2017 [7, 9, 15]. [Dataset]. http://doi.org/10.1371/journal.pgph.0000335.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Gojjam Eshetie Ewunetie; Mamo Dereje Alemu; Muluken Genetu Chanie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Gondar, Ethiopia
    Description

    Sample size calculation with double population proportion formula using Epi-info version 7 for the unmet need of modern FP in South Gondar, Ethiopia, 2017 [7, 9, 15].

  17. a

    Components of Population Change DEATHS Males Females 2001 2021

    • hamiltondatacatalog-mcmaster.hub.arcgis.com
    Updated Feb 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jadonvs_McMaster (2022). Components of Population Change DEATHS Males Females 2001 2021 [Dataset]. https://hamiltondatacatalog-mcmaster.hub.arcgis.com/items/3005847d50ae41ad8b2ebc9dd4dbd9a6
    Explore at:
    Dataset updated
    Feb 4, 2022
    Dataset authored and provided by
    jadonvs_McMaster
    Description

    Footnotes: 1 Population estimates based on the Standard Geographical Classification (SGC) 2016 as delineated in the 2016 Census. 2 A census metropolitan area (CMA) or a census agglomeration (CA) is formed by one or more adjacent municipalities centred on a population centre (known as the core). A CMA must have a total population of at least 100,000 of which 50,000 or more must live in the core based on adjusted data from the previous Census of Population Program. A CA must have a core population of at least 10,000 also based on data from the previous Census of Population Program. To be included in the CMA or CA, other adjacent municipalities must have a high degree of integration with the core, as measured by commuting flows derived from data on place of work from the previous Census Program. If the population of the core of a CA falls below 10,000, the CA is retired from the next census. However, once an area becomes a CMA, it is retained as a CMA even if its total population declines below 100,000 or the population of its core falls below 50,000. All areas inside the CMA or CA that are not population centres are rural areas. When a CA has a core of at least 50,000, based on data from the previous Census of Population, it is subdivided into census tracts. Census tracts are maintained for the CA even if the population of the core subsequently falls below 50,000. All CMAs are subdivided into census tracts (2016 Census Dictionary, catalogue number 98-301-X2016001). 3 An area outside census metropolitan areas and census agglomerations is made up of all areas (within a province or territory) unallocated to a census metropolitan area (CMA) or census agglomeration (CA). 4 The population growth, which is used to calculate population estimates of census metropolitan areas and census agglomerations (table 17100135), is comprised of the components of population growth (table 17100136). 5 This table replaces table 17100079. 6 The components of population growth for census metropolitan areas (CMAs) and census agglomerations (CAs) sometimes had to be calculated using information at the census division level, using the geographic conversion method. This method involves using the population component calculated at the level of the CD(s) in which the CMA or CA is located and applying a ratio corresponding to the proportion of the CMA or CA population included in the corresponding CD(s). For periods prior to 2005/2006, all demographic components for all CMAs and CAs were calculated using geographic conversions. For the periods from 2005/2006 to 2010/2011 inclusively, emigration and internal migration components for areas that were not CMAs according to the 2011 SGC were calculated using geographic conversions. For the periods 2011/2012 to 2015/2016 inclusively, the emigration and internal migration components of regions that were not CMAs or CAs according to the 2011 SGC were calculated using geographic conversions. For the relevant demographic components, trends should be interpreted with caution where the method of calculation has changed over time. This caveat applies particularly to the intraprovincial migration component, for which the assumptions of the geographic conversion method are more at risk of not being met. 7 Period from July 1 to June 30. 8 Age on July 1. 9 The estimates for deaths are preliminary for 2020/2021, updated for 2019/2020 and final up to 2018/2019. Preliminary and updated estimates of deaths were produced by Demography Division, Statistics Canada (see definitions, data sources and methods record number 3601 and 3608) with the exception of Quebec's data which are taken from the estimates of "l'Institut de la statistique du Québec" (ISQ) and then adjusted to Statistics Canada's provincial estimates. Final data were produced by Health Statistics Division Statistics Canada (see definitions data sources and methods record number 3233). However before 2011 the final estimates may differ from the data released by the Health Statistics Division due to the imputation of certain unknown values. In addition for estimates of deaths the age represents age at the beginning of the period (July 1st) and not the age at the time of occurrence as with the Health Statistics Division data."

  18. B

    Data from: The prevalence of MS in the United States: a population-based...

    • borealisdata.ca
    • open.library.ubc.ca
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitchell T. Wallin; William J. Culpepper; Jonathan D. Campbell; Lorene M. Nelson; Annette Langer-Gould; Ruth Ann Marrie; Gary R. Cutter; Wendy E. Kaye; Laurie Wagner; Helen Tremlett; Stephen L. Buka; Piyameth Dilokthornsakul; Barbara Topol; Lie H. Chen; Nicholas G. LaRocca (2021). Data from: The prevalence of MS in the United States: a population-based estimate using health claims data [Dataset]. http://doi.org/10.5683/SP2/FDHAH7
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2021
    Dataset provided by
    Borealis
    Authors
    Mitchell T. Wallin; William J. Culpepper; Jonathan D. Campbell; Lorene M. Nelson; Annette Langer-Gould; Ruth Ann Marrie; Gary R. Cutter; Wendy E. Kaye; Laurie Wagner; Helen Tremlett; Stephen L. Buka; Piyameth Dilokthornsakul; Barbara Topol; Lie H. Chen; Nicholas G. LaRocca
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    AbstractObjective: To generate a national multiple sclerosis (MS) prevalence estimate for the United States by applying a validated algorithm to multiple administrative health claims (AHC) datasets. Methods: A validated algorithm was applied to private, military, and public AHC datasets to identify adult cases of MS between 2008 and 2010. In each dataset, we determined the 3-year cumulative prevalence overall and stratified by age, sex, and census region. We applied insurance-specific and stratum-specific estimates to the 2010 US Census data and pooled the findings to calculate the 2010 prevalence of MS in the United States cumulated over 3 years. We also estimated the 2010 prevalence cumulated over 10 years using 2 models and extrapolated our estimate to 2017. Results: The estimated 2010 prevalence of MS in the US adult population cumulated over 10 years was 309.2 per 100,000 (95% confidence interval [CI] 308.1–310.1), representing 727,344 cases. During the same time period, the MS prevalence was 450.1 per 100,000 (95% CI 448.1–451.6) for women and 159.7 (95% CI 158.7–160.6) for men (female:male ratio 2.8). The estimated 2010 prevalence of MS was highest in the 55- to 64-year age group. A US north-south decreasing prevalence gradient was identified. The estimated MS prevalence is also presented for 2017. Conclusion: The estimated US national MS prevalence for 2010 is the highest reported to date and provides evidence that the north-south gradient persists. Our rigorous algorithm-based approach to estimating prevalence is efficient and has the potential to be used for other chronic neurologic conditions. Usage notesPrev of MS in the US-E-Appendix-Feb-19-2018

  19. w

    Population and Family Health Survey 2023 - Jordan

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2024). Population and Family Health Survey 2023 - Jordan [Dataset]. https://microdata.worldbank.org/index.php/catalog/6288
    Explore at:
    Dataset updated
    Aug 23, 2024
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2023
    Area covered
    Jordan
    Description

    Abstract

    The 2023 Jordan Population and Family Health Survey (JPFHS) is the eighth Population and Family Health Survey conducted in Jordan, following those conducted in 1990, 1997, 2002, 2007, 2009, 2012, and 2017–18. It was implemented by the Department of Statistics (DoS) at the request of the Ministry of Health (MoH).

    The primary objective of the 2023 JPFHS is to provide up-to-date estimates of key demographic and health indicators. Specifically, the 2023 JPFHS: • Collected data at the national level that allowed calculation of key demographic indicators • Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality • Measured contraceptive knowledge and practice • Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery • Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and women age 15–49 • Conducted haemoglobin testing with eligible children age 6–59 months and women age 15–49 to gather information on the prevalence of anaemia • Collected data on women’s and men’s knowledge and attitudes regarding sexually transmitted infections and HIV/AIDS • Obtained data on women’s experience of emotional, physical, and sexual violence • Gathered data on disability among household members

    The information collected through the 2023 JPFHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Jordan.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2023 JPFHS was the 2015 Jordan Population and Housing Census (JPHC) frame. The survey was designed to produce representative results for the country as a whole, for urban and rural areas separately, for each of the country’s 12 governorates, and for four nationality domains: the Jordanian population, the Syrian population living in refugee camps, the Syrian population living outside of camps, and the population of other nationalities. Each of the 12 governorates is subdivided into districts, each district into subdistricts, each subdistrict into localities, and each locality into areas and subareas. In addition to these administrative units, during the 2015 JPHC each subarea was divided into convenient area units called census blocks. An electronic file of a complete list of all of the census blocks is available from DoS. The list contains census information on households, populations, geographical locations, and socioeconomic characteristics of each block. Based on this list, census blocks were regrouped to form a general statistical unit of moderate size, called a cluster, which is widely used in various surveys as the primary sampling unit (PSU). The sample clusters for the 2023 JPFHS were selected from the frame of cluster units provided by the DoS.

    The sample for the 2023 JPFHS was a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. In addition, the Syrian refugee camps in Zarqa and Mafraq each formed a special sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a twostage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and subdistrict within each sampling stratum. By using a probability proportional to size selection at the first stage of sampling, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.

    For further details on sample design, see APPENDIX A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Five questionnaires were used for the 2023 JPFHS: (1) the Household Questionnaire, (2) the Woman’s Questionnaire, (3) the Man’s Questionnaire, (4) the Biomarker Questionnaire, and (5) the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Jordan. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Arabic.

    Cleaning operations

    All electronic data files for the 2023 JPFHS were transferred via SynCloud to the DoS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July and completed in September 2023.

    Response rate

    A total of 20,054 households were selected for the sample, of which 19,809 were occupied. Of the occupied households, 19,475 were successfully interviewed, yielding a response rate of 98%.

    In the interviewed households, 13,020 eligible women age 15–49 were identified for individual interviews; interviews were completed with 12,595 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 6,506 men age 15–59 were identified as eligible for individual interviews and 5,873 were successfully interviewed, yielding a response rate of 90%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2023 Jordan Population and Family Health Survey (2023 JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2023 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2023 JPFHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Household age distribution
    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Age displacement at age 14/15
    • Age displacement at age 49/50
    • Pregnancy outcomes by years preceding the survey
    • Completeness of reporting
    • Standardization exercise results from anthropometry training
    • Height and weight data completeness and quality for children
    • Height measurements from random subsample of measured children
    • Interference in height and weight measurements of children
    • Interference in height and weight measurements of women
    • Heaping in
  20. i

    Population and Family Health Survey 2017-2018 - Jordan

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2019). Population and Family Health Survey 2017-2018 - Jordan [Dataset]. https://catalog.ihsn.org/catalog/8005
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2017 - 2018
    Area covered
    Jordan
    Description

    Abstract

    The primary objective of the 2017-18 Jordan Population and Family Health Survey (JPFHS) is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2017-18 JPFHS: - Collected data at the national level that allowed calculation of key demographic indicators - Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality - Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunisation coverage among children, the prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery among ever-married women - Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and ever-married women age 15-49 - Conducted haemoglobin testing on children age 6-59 months and ever-married women age 15-49 to provide information on the prevalence of anaemia among these groups - Collected data on knowledge and attitudes of ever-married women and men about sexually transmitted infections (STIs) and HIV/AIDS - Obtained data on ever-married women’s experience of emotional, physical, and sexual violence - Obtained data on household health expenditures

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-59 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2017-18 JPFHS is based on Jordan's Population and Housing Census (JPHC) frame for 2015. The current survey is designed to produce results representative of the country as a whole, of urban and rural areas separately, of three regions, of 12 administrative governorates, and of three national groups: Jordanians, Syrians, and a group combined from various other nationalities.

    The sample for the 2017-18 JPFHS is a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. Each of the Syrian camps in the governorates of Zarqa and Mafraq formed its own sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a two-stage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and sub-district within each sampling stratum. By using a probability-proportional-to-size selection for the first stage of selection, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.

    In the first stage, 970 clusters were selected with probability proportional to cluster size, with the cluster size being the number of residential households enumerated in the 2015 JPHC. The sample allocation took into account the precision consideration at the governorate level and at the level of each of the three special domains. After selection of PSUs and clusters, a household listing operation was carried out in all selected clusters. The resulting household lists served as the sampling frame for selecting households in the second stage. A fixed number of 20 households per cluster were selected with an equal probability systematic selection from the newly created household listing.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used for the 2017-18 JPFHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect population and health issues relevant to Jordan. After all questionnaires were finalised in English, they were translated into Arabic.

    Cleaning operations

    All electronic data files for the 2017-18 JPFHS were transferred via IFSS to the DOS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in October 2017 and completed in February 2018.

    Response rate

    A total of 19,384 households were selected for the sample, of which 19,136 were found to be occupied at the time of the fieldwork. Of the occupied households, 18,802 were successfully interviewed, yielding a response rate of 98%.

    In the interviewed households, 14,870 women were identified as eligible for an individual interview; interviews were completed with 14,689 women, yielding a response rate of 99%. A total of 6,640 eligible men were identified in the sampled households and 6,429 were successfully interviewed, yielding a response rate of 97%. Response rates for both women and men were similar across urban and rural areas.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Jordan Population and Family Health Survey (JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 JPFHS sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programmes developed by ICF International. These programmes use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    The Taylor linearisation method treats any percentage or average as a ratio estimate, r = y/x, where y represents the total sample value for variable y, and x represents the total number of cases in the group or subgroup under consideration.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix C of the survey final report.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2020). Population projection components of change by local authority and year, 2018 to 2043 [Dataset]. https://statswales.gov.wales/Catalogue/Population-and-Migration/Population/Projections/Local-Authority/2018-based/populationprojectioncomponentsofchange-by-localauthority-year

Population projection components of change by local authority and year, 2018 to 2043

Explore at:
Dataset updated
Mar 2020
Description

This dataset provides the components of change involved in the calculation of the population projections for local authorities in Wales. Data cover the change between each successive projection year and relate to the change from the middle of each year to the middle of the following year. The first year's data represent the change from the base year of mid-2018 to mid-2019, through the projection period to show the change for mid-2042 to mid-2043. This is the fifth set of population projections published for the 22 local authorities in Wales. Note that the projections become increasingly uncertain the further we try to look into the future.

Search
Clear search
Close search
Google apps
Main menu