51 datasets found
  1. Crude birth rate, age-specific fertility rates and total fertility rate...

    • www150.statcan.gc.ca
    • datasets.ai
    • +3more
    Updated Sep 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Crude birth rate, age-specific fertility rates and total fertility rate (live births) [Dataset]. http://doi.org/10.25318/1310041801-eng
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.

  2. Arica y Parinacota Crude Birth Rate

    • jp.knoema.com
    csv, json, sdmx, xls
    Updated Dec 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2018). Arica y Parinacota Crude Birth Rate [Dataset]. https://jp.knoema.com/atlas/%E3%83%81%E3%83%AA/Arica-y-Parinacota/topics/Demography/Fertility/Crude-Birth-Rate
    Explore at:
    csv, sdmx, json, xlsAvailable download formats
    Dataset updated
    Dec 14, 2018
    Dataset authored and provided by
    Knoema
    Time period covered
    2006 - 2010
    Area covered
    Arica y Parinacota
    Variables measured
    Crude Birth Rate
    Description

    20.0 (Births per 1'000 Population) in 2010. Total country and regional values are calculated as live births according to the development of new correction factors (methodology explained in Appendix B of Vital Statistics Yearbook 2009). For the calculation of these rates estimated population as of June 30 of the current year is used according to the current Administrative Policy Division and considering the INE population estimates and projections, based on the 2002 Census. 2010: provisional figures.

  3. W

    Libertador General Bernardo O'Higgins Crude Birth Rate

    • knoema.de
    csv, json, sdmx, xls
    Updated Dec 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2018). Libertador General Bernardo O'Higgins Crude Birth Rate [Dataset]. https://knoema.de/atlas/Chile/Libertador-General-Bernardo-OHiggins/Crude-Birth-Rate
    Explore at:
    json, sdmx, csv, xlsAvailable download formats
    Dataset updated
    Dec 14, 2018
    Dataset authored and provided by
    Knoema
    Time period covered
    2006 - 2010
    Area covered
    Chile, O'Higgins
    Variables measured
    Crude Birth Rate
    Description

    14,4 (Births per 1'000 Population) in 2010. Total country and regional values are calculated as live births according to the development of new correction factors (methodology explained in Appendix B of Vital Statistics Yearbook 2009). For the calculation of these rates estimated population as of June 30 of the current year is used according to the current Administrative Policy Division and considering the INE population estimates and projections, based on the 2002 Census. 2010: provisional figures.

  4. u

    Population and Family Health Survey 2012 - Jordan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2012
    Area covered
    Jordan
    Description

    Abstract

    The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

    The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

    Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

    Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

    The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

    In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

    The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

    Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

    Cleaning operations

    Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

    Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

    Response rate

    In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

    In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

  5. T

    Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Mar 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xml, csv, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Mar 22, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  6. i

    Demographic and Health Survey 1993 - Turkey

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (2019). Demographic and Health Survey 1993 - Turkey [Dataset]. https://catalog.ihsn.org/index.php/catalog/2501/study-description
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Institute of Population Studies
    General Directorate of Mother and Child Health and Family Planning
    Time period covered
    1993
    Area covered
    Turkey
    Description

    Abstract

    The 1993 Turkish Demographic and Health Survey (TDHS) is a nationally representative survey of ever-married women less than 50 years old. The survey was designed to provide information on fertility levels and trends, infant and child mortality, family planning, and maternal and child health. The TDHS was conducted by the Hacettepe University Institute of Population Studies under a subcontract through an agreement between the General Directorate of Mother and Child Health and Family Planning, Ministry of Health and Macro International Inc. of Calverton, Maryland. Fieldwork was conducted from August to October 1993. Interviews were carried out in 8,619 households and with 6,519 women.

    The Turkish Demographic and Health Survey (TDHS) is a national sample survey of ever-married women of reproductive ages, designed to collect data on fertility, marriage patterns, family planning, early age mortality, socioeconomic characteristics, breastfeeding, immunisation of children, treatment of children during episodes of illness, and nutritional status of women and children. The TDHS, as part of the international DHS project, is also the latest survey in a series of national-level population and health surveys in Turkey, which have been conducted by the Institute of Population Studies, Haeettepe University (HIPS).

    More specifically, the objectives of the TDHS are to:

    Collect data at the national level that will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; Analyse the direct and indirect factors that determine levels and trends in fertility and childhood mortality; Measure the level of contraceptive knowledge and practice by method, region, and urban- rural residence; Collect data on mother and child health, including immunisations, prevalence and treatment of diarrhoea, acute respiratory infections among children under five, antenatal care, assistance at delivery, and breastfeeding; Measure the nutritional status of children under five and of their mothers using anthropometric measurements.

    The TDHS information is intended to assist policy makers and administrators in evaluating existing programs and in designing new strategies for improving family planning and health services in Turkey.

    MAIN RESULTS

    Fertility in Turkey is continuing to decline. If Turkish women maintain current fertility rates during their reproductive years, they can expect to have all average of 2.7 children by the end of their reproductive years. The highest fertility rate is observed for the age group 20-24. There are marked regional differences in fertility rates, ranging from 4.4 children per woman in the East to 2.0 children per woman in the West. Fertility also varies widely by urban-rural residence and by education level. A woman living in rural areas will have almost one child more than a woman living in an urban area. Women who have no education have almost one child more than women who have a primary-level education and 2.5 children more than women with secondary-level education.

    The first requirement of success ill family planning is the knowledge of family planning methods. Knowledge of any method is almost universal among Turkish women and almost all those who know a method also know the source of the method. Eighty percent of currently married women have used a method sometime in their life. One third of currently married women report ever using the IUD. Overall, 63 percent of currently married women are currently using a method. The majority of these women are modern method users (35 percent), but a very substantial proportion use traditional methods (28 percent). the IUD is the most commonly used modern method (I 9 percent), allowed by the condom (7 percent) and the pill (5 percent). Regional differences are substantial. The level of current use is 42 percent in tile East, 72 percent in tile West and more than 60 percent in tile other three regions. "File common complaints about tile methods are side effects and health concerns; these are especially prevalent for the pill and IUD.

    One of the major child health indicators is immunisation coverage. Among children age 12-23 months, the coverage rates for BCG and the first two doses of DPT and polio were about 90 percent, with most of the children receiving those vaccines before age one. The results indicate that 65 percent of the children had received all vaccinations at some time before the survey. On a regional basis, coverage is significantly lower in the Eastern region (41 percent), followed by the Northern and Central regions (61 percent and 65 percent, respectively). Acute respiratory infections (ARI) and diarrhea are the two most prevalent diseases of children under age five in Turkey. In the two weeks preceding the survey, the prevalence of ARI was 12 percent and the prevalence of diarrhea was 25 percent for children under age five. Among children with diarrhea 56 percent were given more fluids than usual.

    Breastfeeding in Turkey is widespread. Almost all Turkish children (95 percent) are breastfed for some period of time. The median duration of breastfeeding is 12 months, but supplementary foods and liquids are introduced at an early age. One-third of children are being given supplementary food as early as one month of age and by the age of 2-3 months, half of the children are already being given supplementary foods or liquids.

    By age five, almost one-filth of children arc stunted (short for their age), compared to an international reference population. Stunting is more prevalent in rural areas, in the East, among children of mothers with little or no education, among children who are of higher birth order, and among those born less than 24 months after a prior birth. Overall, wasting is not a problem. Two percent of children are wasted (thin for their height), and I I percent of children under five are underweight for their age. The survey results show that obesity is d problem among mothers. According to Body Mass Index (BMI) calculations, 51 percent of mothers are overweight, of which 19 percent are obese.

    Geographic coverage

    The Turkish Demographic and Health Survey (TDHS) is a national sample survey.

    Analysis unit

    • Household
    • Women age 12-49
    • Children under five

    Universe

    The population covered by the 1993 DHS is defined as the universe of all ever-married women age 12-49 who were present in the household on the night before the interview were eligible for the survey.

    Kind of data

    Sample survey data

    Sampling procedure

    The sample for the TDHS was designed to provide estimates of population and health indicators, including fertility and mortality rates for the nation as a whole, fOr urban and rural areas, and for the five major regions of the country. A weighted, multistage, stratified cluster sampling approach was used in the selection of the TDHS sample.

    Sample selection was undertaken in three stages. The sampling units at the first stage were settlements that differed in population size. The frame for the selection of the primary sampling units (PSUs) was prepared using the results of the 1990 Population Census. The urban frame included provinces and district centres and settlements with populations of more than 10,000; the rural frame included subdistricts and villages with populations of less than 10,000. Adjustments were made to consider the growth in some areas right up to survey time. In addition to the rural-urban and regional stratifications, settlements were classified in seven groups according to population size.

    The second stage of selection involved the list of quarters (administrative divisions of varying size) for each urban settlement, provided by the State Institute of Statistics (SIS). Every selected quarter was subdivided according tothe number of divisions(approximately 100 households)assigned to it. In rural areas, a selected village was taken as a single quarter, and wherever necessary, it was divided into subdivisions of approximately 100 households. In cases where the number of households in a selected village was less than 100 households, the nearest village was selected to complete the 100 households during the listing activity, which is described below.

    After the selection of the secondary sampling units (SSUs), a household listing was obtained for each by the TDHS listing teams. The listing activity was carried out in May and June. From the household lists, a systematic random sample of households was chosen for the TDHS. All ever-married women age 12-49 who were present in the household on the night before the interview were eligible for the survey.

    Mode of data collection

    Face-to-face

    Research instrument

    Two questionnaires were used in the main fieldwork for the TDHS: the Household Questionnaire and the Individual Questionnaire for ever-married women of reproductive age. The questionnaires were based on the model survey instruments developed in the DHS program and on the questionnaires that had been employed in previous Turkish population and health surveys. The questionnaires were adapted to obtain data needed for program planning in Turkey during consultations with population and health agencies. Both questionnaires were developed in English and translated into Turkish.

    a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, marital status and relationship to the head of household for each person listed as a household member

  7. i

    Demographic Maternal and Child Health Survey 1997 - Yemen, Rep.

    • dev.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Organization (CSO) (2019). Demographic Maternal and Child Health Survey 1997 - Yemen, Rep. [Dataset]. https://dev.ihsn.org/nada/catalog/study/YEM_1997_DHS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Central Statistical Organization (CSO)
    Time period covered
    1997
    Area covered
    Yemen
    Description

    Abstract

    The 1997 Yemen Demographic Maternal and Child Health Survey (YDMCHS) is part of the worldwide Demographic and Health Surveys (DHS) program. The DHS program is designed to collect data on fertility, family planning and maternal and child health.

    The YDMCHS-97 has the following objectives: 1. Provide policymakers and decisionmakers with a reliable database and analyses useful for policy choices and population programs, and provide researchers, other interested persons, and scholars with such data. 2. Update and expand the national population and health data base through collection of data which will allow the calculation of demographic rates, especially fertility rates, and infant and child mortality rates; 3. Analyse the direct and indirect factors which determine levels and trends of fertility. Indicators related to fertility will serve to elaborate plans for social and economic development; 4. Measure the level of contraceptive knowledge and practice by method, by rural and urban residence including some homogeneous governorates (Sana’a, Aden, Hadhramaut, Hodeidah, Hajjah and Lahj). 5. Collect quality data on family health: immunizations, prevalence and treatment of diarrhea and other diseases among children under five, prenatal visits, assistance at delivery and breastfeeding; 6. Measure the nutritional status of mothers and their children under five years (anthropometric measurements: weight and height); 7. Measure the level of maternal mortality at the national level. 8. Develop skills and resources necessary to conduct high-quality demographic and health surveys.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLE DESIGN

    The 1997 YDMCHS was based on a national sample in order to provide estimates for general indicators for the following domains: Yemen as a whole, urban and rural areas (each as a separate domain), three ecological zones identified as Coastal, Mountainous, and Plateau and Desert, as well as governorates with a sample size of at least 500 completed cases. The survey sample was designed as a two-stage cluster sample of 475 enumeration areas (EA), 135 in urban areas and 340 in rural areas. The master sample, based on the 1994 census frame, was used as the frame for the 1997 YDMCHS. The population covered by the Yemen survey was the universe of all ever-married women age 15-49. The initial target sample was 10,000 completed interviews among eligible women, and the final sample was 10,414. In order to get this number of completed interviews, and using the response rate found in the 1991-92 YDMCHS survey, a total of 10,701 of the 11,435 potential households selected for the household sample were completed.

    In each selected EA, a complete household listing operation took place between July and September 1997, and was undertaken by nineteen (19) field teams, taking into consideration the geographical closeness of the areas assigned to each team.

    Note: See detailed description of sample design in APPENDIX B of the final survey report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Two Questionnaires were used to collect survey data:

    Household Questionnaire: The household questionnaire consists of two parts: a household schedule and a series of questions relating to the health and socioeconomic status of the household. The household schedule was used to list all usual household members. For each of the individuals included in the schedule, information was collected on the relationship to the household head, age, sex, marital status (for those 10 years and older), educational level (for those 6 years and older) and work status (for those 10 years and older). It also collects information on fertility, general mortality and child survival. The second part of the household questionnaire included questions on housing characteristics including the type of dwelling, location, materials used in construction, number of rooms, kitchen in use, main source of drinking water and health related aspects, lighting and toilet facilities, disposal of garbage, durable commodities, and assets, type of salt the household uses for cooking, and other related residential information.

    Individual Questionnaire: The individual questionnaire was administered to all ever-married women age 15-49 years who were usual residents. It contained 10 sections on the followings topics: - Respondent's background - Reproduction - Family planning - Pregnancy and breastfeeding - Immunization and health - Birth preferences - Marriage and husband's background - Maternal mortality - Female circumcision - Height and weight

    Response rate

    10,701 households, distributed between urban (3,008 households) and rural areas (7,693), households which were successfully interviewed in the 1997 YDMCHS. This represents a country-wide response rate of 98.2 percent (98.7 and 98.0 percent, respectively, for urban and rural areas).

    A total of 11,158 women were identified as eligible to be interviewed. Questionnaires were completed for 10,414 women, which represents a response rate of 93.3 percent. The response rate in urban areas was 93 percent; and in rural areas it was 93.5 percent.

    Note: See summarized response rates by place of residence in Table 1.1 of the final survey report.

    Sampling error estimates

    The estimates from a sample surveys are affected by two types of errors: (1) non-sampling error, and (2) sampling error. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the YDMCHS-97 to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the YDMCHS-97 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would have yielded results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistics in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the YDMCHS-97 sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the YDMCHS-97 is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearization method of variance estimate for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimate of more complex statistics such as fertility and mortality rates.

    Note: See detailed estimate of sampling error calculation in APPENDIX C of the final survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women and men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX D of the final survey report.

  8. o

    Replication data for: Calculation of a Population Externality

    • openicpsr.org
    Updated May 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Henning Bohn; Charles Stuart (2015). Replication data for: Calculation of a Population Externality [Dataset]. http://doi.org/10.3886/E114565V1
    Explore at:
    Dataset updated
    May 1, 2015
    Dataset provided by
    American Economic Association
    Authors
    Henning Bohn; Charles Stuart
    Description

    It is known that when people generate externalities, a birth also generates an externality and efficiency requires a Pigou tax/subsidy on having children. The size of the externality from a birth is important for studying policy. We calculate the size of this "population externality" in a specific case: we consider a maintained hypothesis that greenhouse gas emissions are a serious problem and assume government reacts by optimally restricting emissions. Calculated population externalities are large under many assumptions (JEL D62, H23, J11, J13, Q54, Q58)

  9. М

    Aysén del General Carlos Ibáñez del Campo Crude Birth Rate

    • ru.knoema.com
    csv, json, sdmx, xls
    Updated Dec 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2018). Aysén del General Carlos Ibáñez del Campo Crude Birth Rate [Dataset]. https://ru.knoema.com/atlas/%D0%A7%D0%B8%D0%BB%D0%B8/Ays%C3%A9n-del-General-Carlos-Ib%C3%A1%C3%B1ez-del-Campo/Crude-Birth-Rate
    Explore at:
    sdmx, json, xls, csvAvailable download formats
    Dataset updated
    Dec 14, 2018
    Dataset authored and provided by
    Knoema
    Time period covered
    2006 - 2010
    Area covered
    Aysén
    Variables measured
    Crude Birth Rate
    Description

    15,7 (Births per 1'000 Population) в 2010. Total country and regional values are calculated as live births according to the development of new correction factors (methodology explained in Appendix B of Vital Statistics Yearbook 2009). For the calculation of these rates estimated population as of June 30 of the current year is used according to the current Administrative Policy Division and considering the INE population estimates and projections, based on the 2002 Census. 2010: provisional figures.

  10. f

    Calculation method of variables.

    • plos.figshare.com
    xls
    Updated Mar 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sichen Liu; Quanling Cai; Mingxing Wang; Kaisheng Di (2024). Calculation method of variables. [Dataset]. http://doi.org/10.1371/journal.pone.0300345.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 28, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Sichen Liu; Quanling Cai; Mingxing Wang; Kaisheng Di
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As China continues to implement its progressive fertility promotion policy, there has been a drastic decline in the fertility rate. Given that the migrant population constitutes more than a quarter of China’s total population, enhancing the willingness of this demographic to have additional children through policy-guided urban public services is pivotal for optimizing China’s population development strategy. This study analyzes the influence of urban public services on the reproductive intentions of the migrant population, utilizing data from 110,667 migrant families with one child, drawn from China’s Migrant Population Dynamic Monitoring data in 2016 and 2018. The data analysis reveals several key findings: (1) Urban public services, overall, exhibit a notable positive effect on the willingness of the migrant population to have more children, albeit with limitations and a declining trend. (2) Among urban public services, primary basic education significantly impacts the willingness of the migrant population to expand their families. (3) Large cities have created a ’reverse screening’ effect on the migrant population, leading to differential access to public services. This scenario caters effectively to the high human capital migrant individuals while reducing accessibility to livelihood public services for the low human capital migrant population. This paper critically evaluates China’s progressively adjusted fertility policy from the perspective of the migrant population. It underscores the necessity of establishing a comprehensive fertility support policy system across China.

  11. g

    2014-based local authority population projection components

    • statswales.gov.wales
    Updated Sep 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). 2014-based local authority population projection components [Dataset]. https://statswales.gov.wales/Catalogue/Population-and-Migration/Population/Projections/Local-Authority/2014-based/populationprojectioncomponentsofchange-by-localauthority-year
    Explore at:
    Dataset updated
    Sep 2016
    Description

    This dataset provides the components of change involved in the calculation of the population projections for local authorities in Wales. Data cover the change between each successive projection year and relate to the change from the middle of each year to the middle of the following year. The first year's data represent the change from the base year of mid-2014 to mid-2015, through the projection period to show the change for mid-2038 to mid-2039. This is the fourth set of population projections published for the 22 local authorities in Wales. Note that the projections become increasingly uncertain the further we try to look into the future. Also note that these figures differ from the Wales data in the national population projections produced by the Office for National Statistics because the key aim of the local authority population projections is to produce robust local authority population projections for Wales, which reflect local trends in recent years while the main purpose of the national projections is to produce robust population projections for Wales which reflect national trends in recent years. The national projections and the local authority projections are different for two main reasons: 1. The methodology used to produce assumptions in the local authority projections are different to those used in the national projections. Some of these are due to slightly different data sources. Also, although one set of assumptions may fit well for a national trend, using similar assumptions may not always produce feasible results for all local authority areas because of the different nature and trends between local authorities. 2. The geographical level for which the assumptions are based and applied is also important. For example, it is not appropriate to sum local rates (eg fertility) to derive a national rate, and therefore a model operating at different geographic levels (but using rates) will produce different results for the different geographic levels.

  12. i

    Demographic and Health Survey 1995 - Uganda

    • catalog.ihsn.org
    • microdata.ubos.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (2019). Demographic and Health Survey 1995 - Uganda [Dataset]. https://catalog.ihsn.org/catalog/2469
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics
    Time period covered
    1995
    Area covered
    Uganda
    Description

    Abstract

    The 1995 Uganda Demographic and Health Survey (UDHS-II) is a nationally-representative survey of 7,070 women age 15-49 and 1,996 men age 15-54. The UDHS was designed to provide information on levels and trends of fertility, family planning knowledge and use, infant and child mortality, and maternal and child health. Fieldwork for the UDHS took place from late-March to mid-August 1995. The survey was similar in scope and design to the 1988-89 UDHS. Survey data show that fertility levels may be declining, contraceptive use is increasing, and childhood mortality is declining; however, data also point to several remaining areas of challenge.

    The 1995 UDHS was a follow-up to a similar survey conducted in 1988-89. In addition to including most of the same questions included in the 1988-89 UDHS, the 1995 UDHS added more detailed questions on AIDS and maternal mortality, as well as incorporating a survey of men. The general objectives of the 1995 UDHS are to: - provide national level data which will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; - analyse the direct and indirect factors which determine the level and trends of fertility; - measure the level of contraceptive knowledge and practice (of both women and men) by method, by urban-rural residence, and by region; - collect reliable data on maternal and child health indicators; immunisation, prevalence, and treatment of diarrhoea and other diseases among children under age four; antenatal visits; assistance at delivery; and breastfeeding; - assess the nutritional status of children under age four and their mothers by means of anthropometric measurements (weight and height), and also child feeding practices; and - assess among women and men the prevailing level of specific knowledge and attitudes regarding AIDS and to evaluate patterns of recent behaviour regarding condom use.

    MAIN RESULTS

    • Fertility:

    Fertility Trends. UDHS data indicate that fertility in Uganda may be starting to decline. The total fertility rate has declined from the level of 7.1 births per woman that prevailed over the last 2 decades to 6.9 births for the period 1992-94. The crude birth rate for the period 1992-94 was 48 live births per I000 population, slightly lower than the level of 52 observed from the 1991 Population and Housing Census. For the roughly 80 percent of the country that was covered in the 1988-89 UDHS, fertility has declined from 7.3 to 6.8 births per woman, a drop of 7 percent over a six and a half year period.

    Birth Intervals. The majority of Ugandan children (72 percent) are born after a "safe" birth interval (24 or more months apart), with 30 percent born at least 36 months after a prior birth. Nevertheless, 28 percent of non-first births occur less than 24 months after the preceding birth, with 10 percent occurring less than 18 months since the previous birth. The overall median birth interval is 29 months. Fertility Preferences. Survey data indicate that there is a strong desire for children and a preference for large families in Ugandan society. Among those with six or more children, 18 percent of married women want to have more children compared to 48 percent of married men. Both men and women desire large families.

    • Family planning:

    Knowledge of Contraceptive Methods. Knowledge of contraceptive methods is nearly universal with 92 percent of all women age 15-49 and 96 percent of all men age 15-54 knowing at least one method of family planning. Increasing Use of Contraception. The contraceptive prevalence rate in Uganda has tripled over a six-year period, rising from about 5 percent in approximately 80 percent of the country surveyed in 1988-89 to 15 percent in 1995.

    Source of Contraception. Half of current users (47 percent) obtain their methods from public sources, while 42 percent use non-governmental medical sources, and other private sources account for the remaining 11 percent.

    • Maternal and child health:

    High Childhood Mortality. Although childhood mortality in Uganda is still quite high in absolute terms, there is evidence of a significant decline in recent years. Currently, the direct estimate of the infant mortality rate is 81 deaths per 1,000 births and under five mortality is 147 per 1,000 births, a considerable decline from the rates of 101 and 180, respectively, that were derived for the roughly 80 percent of the country that was covered by the 1988-89 UDHS.

    Childhood Vaccination Coverage. One possible reason for the declining mortality is improvement in childhood vaccination coverage. The UDHS results show that 47 percent of children age 12-23 months are fully vaccinated, and only 14 percent have not received any vaccinations.

    Childhood Nutritional Status. Overall, 38 percent of Ugandan children under age four are classified as stunted (low height-for-age) and 15 percent as severely stunted. About 5 percent of children under four in Uganda are wasted (low weight-for-height); 1 percent are severely wasted. Comparison with other data sources shows little change in these measures over time.

    • AIDS:

    Virtually all women and men in Uganda are aware of AIDS. About 60 percent of respondents say that limiting the number of sexual partners or having only one partner can prevent the spread of disease. However, knowledge of ways to avoid AIDS is related to respondents' education. Safe patterns of sexual behaviour are less commonly reported by respondents who have little or no education than those with more education. Results show that 65 percent of women and 84 percent of men believe that they have little or no chance of being infected.

    Availability of Health Services. Roughly half of women in Uganda live within 5 km of a facility providing antenatal care, delivery care, and immunisation services. However, the data show that children whose mothers receive both antenatal and delivery care are more likely to live within 5 km of a facility providing maternal and child health (MCH) services (70 percent) than either those whose mothers received only one of these services (46 percent) or those whose mothers received neither antenatal nor delivery care (39 percent).

    Geographic coverage

    The 1995 Uganda Demographic and Health Survey (UDHS-II) is a nationally-representative survey. For the purpose of the 1995 UDHS, the following domains were utilised: Uganda as a whole; urban and rural areas separately; each of the four regions: Central, Eastern, Northern, and Western; areas in the USAID-funded DISH project to permit calculation of contraceptive prevalence rates.

    Analysis unit

    • Household
    • Women age 15-49
    • Men age 15-54
    • Children under four

    Universe

    The population covered by the 1995 UDHS is defined as the universe of all women age 15-49 in Uganda. But because of insecurity, eight EAs could not be surveyed (six in Kitgum District, one in Apac District, and one in Moyo District). An additional two EAs (one in Arua and one in Moroto) could not be surveyed, but substitute EAs were selected in their place.

    Kind of data

    Sample survey data

    Sampling procedure

    A sample of 303 primary sampling units (PSU) consisting of enumeration areas (EAs) was selected from a sampling frame of the 1991 Population and Housing Census. For the purpose of the 1995 UDHS, the following domains were utilised: Uganda as a whole; urban and rural areas separately; each of the four regions: Central, Eastern, Northern, and Western; areas in the USAID-funded DISH project to permit calculation of contraceptive prevalence rates.

    Districts in the DISH project area were grouped by proximity into the following five reporting domains: - Kasese and Mbarara Districts - Masaka and Rakai Districts - Luwero and Masindi Districts - Jinja and Kamuli Districts - Kampala District

    The sample for the 1995 UDHS was selected in two stages. In the first stage, 303 EAs were selected with probability proportional to size. Then, within each selected EA, a complete household listing and mapping exercise was conducted in December 1994 forming the basis for the second-stage sampling. For the listing exercise, 11 listers from the Statistics Department were trained. Institutional populations (army barracks, hospitals, police camps, etc.) were not listed.

    From these household lists, households to be included in the UDHS were selected with probability inversely proportional to size based on the household listing results. All women age 15-49 years in these households were eligible to be interviewed in the UDHS. In one-third of these selected households, all men age 15-54 years were eligible for individual interview as well. The overall target sample was 6,000 women and 2,000 men. Because of insecurity, eight EAs could not be surveyed (six in Kitgum District, one in Apac District, and one in Moyo District). An additional two EAs (one in Arua and one in Moroto) could not be surveyed, but substitute EAs were selected in their place.

    Since one objective of the survey was to produce estimates of specific demographic and health indicators for the areas included in the DISH project, the sample design allowed for oversampling of households in these districts relative to their actual proportion in the population. Thus, the 1995 UDHS sample is not self-weighting at the national level; weights are required to estimate national-level indicators. Due to the weighting factor and rounding of estimates, figures may not add to totals. In addition, the percent total may not add to 100.0 due to rounding.

    Mode of data collection

    Face-to-face

    Research instrument

    Four questionnaires were used in the 1995 UDHS.

    a) A Household Schedule was used to list the names and certain

  13. g

    Birth rate of the Venetian population (1990:2016)

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Birth rate of the Venetian population (1990:2016) [Dataset]. https://gimi9.com/dataset/eu_55519467-1a8b-4d88-b73f-6531558ff974/
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contains data on the number of births in a year per 1,000 inhabitants of the resident population for all municipalities in Veneto from 1990 to the last year available. The data come from the Istat survey “Movement and calculation of the annual resident population”.

  14. i

    Population and Family Health Survey 2017-2018 - Jordan

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2019). Population and Family Health Survey 2017-2018 - Jordan [Dataset]. https://catalog.ihsn.org/catalog/8005
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2017 - 2018
    Area covered
    Jordan
    Description

    Abstract

    The primary objective of the 2017-18 Jordan Population and Family Health Survey (JPFHS) is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2017-18 JPFHS: - Collected data at the national level that allowed calculation of key demographic indicators - Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality - Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunisation coverage among children, the prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery among ever-married women - Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and ever-married women age 15-49 - Conducted haemoglobin testing on children age 6-59 months and ever-married women age 15-49 to provide information on the prevalence of anaemia among these groups - Collected data on knowledge and attitudes of ever-married women and men about sexually transmitted infections (STIs) and HIV/AIDS - Obtained data on ever-married women’s experience of emotional, physical, and sexual violence - Obtained data on household health expenditures

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-59 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2017-18 JPFHS is based on Jordan's Population and Housing Census (JPHC) frame for 2015. The current survey is designed to produce results representative of the country as a whole, of urban and rural areas separately, of three regions, of 12 administrative governorates, and of three national groups: Jordanians, Syrians, and a group combined from various other nationalities.

    The sample for the 2017-18 JPFHS is a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. Each of the Syrian camps in the governorates of Zarqa and Mafraq formed its own sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a two-stage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and sub-district within each sampling stratum. By using a probability-proportional-to-size selection for the first stage of selection, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.

    In the first stage, 970 clusters were selected with probability proportional to cluster size, with the cluster size being the number of residential households enumerated in the 2015 JPHC. The sample allocation took into account the precision consideration at the governorate level and at the level of each of the three special domains. After selection of PSUs and clusters, a household listing operation was carried out in all selected clusters. The resulting household lists served as the sampling frame for selecting households in the second stage. A fixed number of 20 households per cluster were selected with an equal probability systematic selection from the newly created household listing.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used for the 2017-18 JPFHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect population and health issues relevant to Jordan. After all questionnaires were finalised in English, they were translated into Arabic.

    Cleaning operations

    All electronic data files for the 2017-18 JPFHS were transferred via IFSS to the DOS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in October 2017 and completed in February 2018.

    Response rate

    A total of 19,384 households were selected for the sample, of which 19,136 were found to be occupied at the time of the fieldwork. Of the occupied households, 18,802 were successfully interviewed, yielding a response rate of 98%.

    In the interviewed households, 14,870 women were identified as eligible for an individual interview; interviews were completed with 14,689 women, yielding a response rate of 99%. A total of 6,640 eligible men were identified in the sampled households and 6,429 were successfully interviewed, yielding a response rate of 97%. Response rates for both women and men were similar across urban and rural areas.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Jordan Population and Family Health Survey (JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 JPFHS sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programmes developed by ICF International. These programmes use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    The Taylor linearisation method treats any percentage or average as a ratio estimate, r = y/x, where y represents the total sample value for variable y, and x represents the total number of cases in the group or subgroup under consideration.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix C of the survey final report.

  15. H

    DHS_U5M: A flexible SAS macro to calculate childhood mortality estimates and...

    • data.niaid.nih.gov
    pdf +1
    Updated May 30, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sidney Atwood (2012). DHS_U5M: A flexible SAS macro to calculate childhood mortality estimates and standard errors from birth histories [Dataset]. http://doi.org/10.7910/DVN/OLI0ID
    Explore at:
    pdf, text/x-sas-syntax; charset=us-asciiAvailable download formats
    Dataset updated
    May 30, 2012
    Dataset provided by
    Research Core, Division of Global Health Equity, Brigham & Women's Hospital
    Authors
    Sidney Atwood
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    global
    Description

    This SAS macro generates childhood mortality estimates (neonatal, post-neonatal, infant (1q0), child (4q1) and under-five (5q0) mortality) and standard errors based on birth histories reported by women during a household survey. We have made the SAS macro flexible enough to accommodate a range of calculation specifications including multi-stage sampling frames, and simple random samples or censuses. Childhood mortality rates are the component death probabilities of dying before a specific age. This SAS macro is based on a macro built by Keith Purvis at MeasureDHS. His method is described in Estimating Sampling Errors of Means, Total Fertility, and Childhood Mortality Rates Using SAS (www.measuredhs.com/pubs/pdf/OD17/OD17.pdf, section 4). More information about Childhood Mortality Estimation can also be found in the Guide to DHS Statistics (www.measuredhs.com/pubs/pdf/DHSG1/Guide_DHS_Statistics.pdf, page 93). We allow the user to specify whether childhood mortality calculations should be based on 5 or 10 years of birth histories, when the birth history window ends, and how to handle age of death with it is reported in whole months (rather than days). The user can also calculate mortality rates within sub-populations, and take account of a complex survey design (unequal probability and cluster samples). Finally, this SAS program is designed to read data in a number of different formats.

  16. i

    Demographic and Health Survey 2000 - Ethiopia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Authority (CSA) (2017). Demographic and Health Survey 2000 - Ethiopia [Dataset]. https://catalog.ihsn.org/catalog/157
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Central Statistical Authority (CSA)
    Time period covered
    2000
    Area covered
    Ethiopia
    Description

    Abstract

    The principal objective of the Ethiopia Demographic and Health Survey (DHS) is to provide current and reliable data on fertility and family planning behavior, child mortality, children’s nutritional status, the utilization of maternal and child health services, and knowledge of HIV/AIDS. This information is essential for informed policy decisions, planning, monitoring, and evaluation of programs on health in general and reproductive health in particular at both the national and regional levels. A long-term objective of the survey is to strengthen the technical capacity of the Central Statistical Authority to plan, conduct, process, and analyze data from complex national population and health surveys. Moreover, the 2000 Ethiopia DHS is the first survey of its kind in the country to provide national and regional estimates on population and health that are comparable to data collected in similar surveys in other developing countries. As part of the worldwide DHS project, the Ethiopia DHS data add to the vast and growing international database on demographic and health variables. The Ethiopia DHS collected demographic and health information from a nationally representative sample of women and men in the reproductive age groups 15-49 and 15-59, respectively.

    The Ethiopia DHS was carried out under the aegis of the Ministry of Health and was implemented by the Central Statistical Authority. ORC Macro provided technical assistance through its MEASURE DHS+ project. The survey was principally funded by the Essential Services for Health in Ethiopia (ESHE) project through a bilateral agreement between the United States Agency for International Development (USAID) and the Federal Democratic Republic of Ethiopia. Funding was also provided by the United Nations Population Fund (UNFPA).

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The Ethiopia DHS used the sampling frame provided by the list of census enumeration areas (EAs) with population and household information from the 1994 Population and Housing Census. A proportional sample allocation was discarded because this procedure yielded a distribution in which 80 percent of the sample came from three regions, 16 percent from four regions and 4 percent from five regions. To avoid such an uneven sample allocation among regions, it was decided that the sample should be allocated by region in proportion to the square root of the region's population size. Additional adjustments were made to ensure that the sample size for each region included at least 700 households, in order to yield estimates with reasonable statistical precision.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The Ethiopia DHS used three questionnaires: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire, which were based on model survey instruments developed for the international MEASURE DHS+ project. The questionnaires were specifically geared toward obtaining the kind of information needed by health and family planning program managers and policymakers. The model questionnaires were then adapted to local conditions and a number of additional questions specific to on-going health and family planning programs in Ethiopia were added. These questionnaires were developed in the English language and translated into the five principal languages in use in the country: Amarigna, Oromigna, Tigrigna, Somaligna, and Afarigna. They were then independently translated back to English and appropriate changes were made in the translation of questions in which the back-translated version did not compare well with the original English version. A pretest of all three questionnaires was conducted in the five local languages in November 1999.

    All usual members in a selected household and visitors who stayed there the previous night were enumerated using the Household Questionnaire. Specifically, the Household Questionnaire obtained information on the relationship to the head of the household, residence, sex, age, marital status, parental survivorship, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. Women age 15-49 in all selected households and all men age 15-59 in every fifth selected household, whether usual residents or visitors, were deemed eligible, and were interviewed. The Household Questionnaire also obtained information on some basic socioeconomic indicators such as the number of rooms, the flooring material, the source of water, the type of toilet facilities, and the ownership of a variety of durable items. Information was also obtained on the use of impregnated bednets, and the salt used in each household was tested for its iodine content. All eligible women and all children born since Meskerem 1987 in the Ethiopian Calendar, which roughly corresponds to September 1994 in the Gregorian Calendar, were weighed and measured.

    The Women’s Questionnaire collected information on female respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunization and health, marriage, fertility preferences, and attitudes about family planning, husband’s background characteristics and women’s work, knowledge of HIV/AIDS and other sexually transmitted infections (STIs).

    The Men’s Questionnaire collected information on the male respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, and knowledge of HIV/AIDS and STIs.

    Response rate

    A total of 14,642 households were selected for the Ethiopia DHS, of which 14,167 were found to be occupied. Household interviews were completed for 99 percent of the occupied households. A total of 15,716 eligible women from these households and 2,771 eligible men from every fifth household were identified for the individual interviews. The response rate for eligible women is slightly higher than for eligible men (98 percent compared with 94 percent, respectively). Interviews were successfully completed for 15,367 women and 2,607 men.

    There is no difference by urban-rural residence in the overall response rate for eligible women; however, rural men are slightly more likely than urban men to have completed an interview (94 percent and 92 percent, respectively). The overall response rate among women by region is relatively high and ranges from 93 percent in the Affar Region to 99 percent in the Oromiya Region. The response rate among men ranges from 83 percent in the Affar Region to 98 percent in the Tigray and Benishangul-Gumuz regions.

    Note: See summarized response rates by place of residence in Table A.1.1 and Table A.1.2 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Ethiopia DHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the Ethiopia DHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the Ethiopia DHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the Ethiopia DHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age

  17. C

    Population, households and population dynamics; from 1899

    • ckan.mobidatalab.eu
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OverheidNl (2023). Population, households and population dynamics; from 1899 [Dataset]. https://ckan.mobidatalab.eu/dataset/4415-population-households-and-population-dynamics-from-1899
    Explore at:
    http://publications.europa.eu/resource/authority/file-type/atom, http://publications.europa.eu/resource/authority/file-type/jsonAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    OverheidNl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The most important key figures about population, households, birth, mortality, changes of residence, marriages, marriage dissolutions and change of nationality of the Dutch population. Data available from: 1899 Status of the figures: All data in this publication are final data. Changes as of 9 april 2021: The figures for the period 1987 to 1994 with regard to 'Emigration including the balance of the administrative corrections' have been corrected. The correction is due to duplications present in some of our source files. The differences are minimal. The figures for 1997 with regard to Emigration, including the balance of the administrative corrections for persons with nationality 'European Union (excluding the Netherlands)', and persons with country of birth 'European Union (excluding the Netherlands)' have been corrected. The correction is due to a calculation error. The topics 'Live born children, relative' and 'Sex ratio' have switched places. Changes as of 24 March 2020: The table has been revised. The following changes have been made: Population on January 1: - The number of 'Women' in 2012 has been corrected. - The figures for 'Migration background Suriname' and 'Migration background (former) Netherlands Antilles' have been changed for 1971 up to and including 1994. The changes are the result of a method change in the past, which was not reflected in the table at the time. The figures now match all other sections of StatLine. Population development: 'Emigration' has been changed to 'Emigration including administrative corrections', 'Migration balance' has been changed to 'Migration balance including administrative corrections'. Figures on emigration, including the balance of administrative corrections, provide a better picture of actual emigration than figures on emigration excluding these corrections. Due to the change, the figures for 1977 up to and including 2016 have changed. Live born children: The 2015 figures for 'Live born children from mothers aged 25 to 29, relative' and 'Live born children from mothers aged 30 or older, relative' have been adjusted. Mortality: - The figures for 'Life expectancy at birth: men' and 'Life expectancy at birth: women' for 1950 up to and including 1962, 1972, 1982, 1991, 1999, 2009 and 2011 have been corrected. - The figures for 'Mortality <1 year after birth, relative' for 1994 and 2011 have been corrected. - The figure for 'Mortality <1 year after birth, relative' for 2011 has been corrected. - The figures for 'Deceased by cause of death' have been removed from the table. (For more information: 3. LINKS TO RELEVANT TABLES AND ARTICLES). Foreign migration by nationality: - Various topics related to 'Emigration including administrative corrections' have been added. - 'Total immigration' has been corrected for 1993 and 1996. - 'Immigration, European Union (excluding the Netherlands)' has been adjusted for 2004 and 2013. - 'Emigration excluding administrative corrections, Dutch' has been corrected for 1995 and 2012. - 'Emigration excluding administrative corrections, Total non-Dutch' has been corrected for 1995 and 2012. - 'Emigration excluding administrative corrections, European Union' has been adjusted for 2004, 2005 and 2013. Foreign migration by country of birth: - Various topics related to 'Emigration including administrative corrections' have been added. - 'Total immigration' has been corrected for 1993 and 1996. - 'Immigration, European Union (excluding the Netherlands)' has been adjusted for 1987 up to and including 1990 and for 2004. - 'Immigration, Suriname and the Netherlands Antilles' has been corrected for 2012. - 'Immigration, Netherlands Antilles' has been corrected for 2012. - 'Emigration excluding administrative corrections, European Union (excluding the Netherlands)' has been adjusted for 1989, 1999 and 2004. - 'Emigration excluding administrative corrections, Indonesia' has been corrected for 1994. - 'Emigration excluding administrative corrections, Suriname and the Netherlands Antilles' has been corrected for 1997. - 'Emigration excluding administrative corrections, Netherlands Antilles' has been corrected for 1997. - 'Emigration excluding administrative corrections, Specific emigration areas' has been corrected for 1995. Foreign migration by country of origin / destination: - 'Total immigration' has been corrected for 1996. - 'Immigration, European Union (excluding the Netherlands)' has been adjusted for 2004. - 'Immigration, Indonesia, Suriname and the Netherlands Antilles' has been corrected for 2007 and 2010 up to and including 2016. - 'Immigration, Suriname and the Netherlands Antilles' has been corrected for 2010 up to and including 2016. - 'Immigration, Indonesia' has been corrected for 2013. - 'Immigration, Netherlands Antilles' has been corrected for 2010 up to and including 2016. - 'Emigration excluding administrative corrections, European Union (excluding the Netherlands)' has been adjusted for 1998 and 2004. - 'Emigration excluding administrative corrections, Indonesia, Suriname and the Netherlands Antilles' has been corrected for 2010 up to and including 2016. - 'Emigration excluding administrative corrections, Suriname and Netherlands Antilles' has been corrected for 2010 up to and including 2016. - 'Emigration excluding administrative corrections, Netherlands Antilles' has been corrected for 2010 up to and including 2016. - 'Emigration excluding administrative corrections, Turkey' has been corrected for 2012. The corrections are the result of manual actions. The differences concern rounding differences and are minimal. The adjustments with regard to the European Union are generally the result of a changed calculation method. When will the new figures be published? The figures for the population development in 2019 and the population on 1 January 2020 will be published in the first quarter of 2021.

  18. A

    Los Ríos Crude Birth Rate

    • knoema.es
    csv, json, sdmx, xls
    Updated Dec 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2018). Los Ríos Crude Birth Rate [Dataset]. https://knoema.es/atlas/Chile/Los-R%C3%ADos/topics/Demography/Fertility/Crude-Birth-Rate
    Explore at:
    json, csv, sdmx, xlsAvailable download formats
    Dataset updated
    Dec 14, 2018
    Dataset authored and provided by
    Knoema
    Time period covered
    2006 - 2010
    Area covered
    Los Ríos, Chile
    Variables measured
    Crude Birth Rate
    Description

    14,4 (Births per 1'000 Population) in 2010. Total country and regional values are calculated as live births according to the development of new correction factors (methodology explained in Appendix B of Vital Statistics Yearbook 2009). For the calculation of these rates estimated population as of June 30 of the current year is used according to the current Administrative Policy Division and considering the INE population estimates and projections, based on the 2002 Census. 2010: provisional figures.

  19. Bío Bío Crude Birth Rate

    • knoema.de
    csv, json, sdmx, xls
    Updated Dec 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2018). Bío Bío Crude Birth Rate [Dataset]. https://knoema.de/atlas/Chile/B%C3%ADo-B%C3%ADo/Crude-Birth-Rate
    Explore at:
    xls, csv, json, sdmxAvailable download formats
    Dataset updated
    Dec 14, 2018
    Dataset authored and provided by
    Knoemahttp://knoema.com/
    Time period covered
    2006 - 2010
    Area covered
    Chile, Bío Bío
    Variables measured
    Crude Birth Rate
    Description

    13,9 (Births per 1'000 Population) in 2010. Total country and regional values are calculated as live births according to the development of new correction factors (methodology explained in Appendix B of Vital Statistics Yearbook 2009). For the calculation of these rates estimated population as of June 30 of the current year is used according to the current Administrative Policy Division and considering the INE population estimates and projections, based on the 2002 Census. 2010: provisional figures.

  20. W

    Coquimbo Crude Birth Rate

    • knoema.de
    csv, json, sdmx, xls
    Updated Dec 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2018). Coquimbo Crude Birth Rate [Dataset]. https://knoema.de/atlas/chile/coquimbo/topics/demography/fertility/crude-birth-rate
    Explore at:
    xls, json, sdmx, csvAvailable download formats
    Dataset updated
    Dec 14, 2018
    Dataset authored and provided by
    Knoema
    Time period covered
    2006 - 2010
    Area covered
    Coquimbo
    Variables measured
    Crude Birth Rate
    Description

    15,6 (Births per 1'000 Population) in 2010. Total country and regional values are calculated as live births according to the development of new correction factors (methodology explained in Appendix B of Vital Statistics Yearbook 2009). For the calculation of these rates estimated population as of June 30 of the current year is used according to the current Administrative Policy Division and considering the INE population estimates and projections, based on the 2002 Census. 2010: provisional figures.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Government of Canada, Statistics Canada (2024). Crude birth rate, age-specific fertility rates and total fertility rate (live births) [Dataset]. http://doi.org/10.25318/1310041801-eng
Organization logo

Crude birth rate, age-specific fertility rates and total fertility rate (live births)

1310041801

Explore at:
Dataset updated
Sep 25, 2024
Dataset provided by
Statistics Canadahttps://statcan.gc.ca/en
Area covered
Canada
Description

Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.

Search
Clear search
Close search
Google apps
Main menu