The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show numbers and percentages for voting age population by Strong, Prosperous, And Resilient Communities Challenge in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
SumLevel
Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)
GEOID
Census tract Federal Information Processing Series (FIPS) code
NAME
Name of geographic unit
Planning_Region
Planning region designation for ARC purposes
Acres
Total area within the tract (in acres)
SqMi
Total area within the tract (in square miles)
County
County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)
CountyName
County Name
VotingAgeCitizen_e
# Citizen, 18 and over population, 2017
VotingAgeCitizen_m
# Citizen, 18 and over population, 2017 (MOE)
VotingAgeCitizenMale_e
# Male citizen, 18 and over population, 2017
VotingAgeCitizenMale_m
# Male citizen, 18 and over population, 2017 (MOE)
pVotingAgeCitizenMale_e
% Male citizen, 18 and over population, 2017
pVotingAgeCitizenMale_m
% Male citizen, 18 and over population, 2017 (MOE)
VotingAgeCitizenFemale_e
# Female citizen, 18 and over population, 2017
VotingAgeCitizenFemale_m
# Female citizen, 18 and over population, 2017 (MOE)
pVotingAgeCitizenFemale_e
% Female citizen, 18 and over population, 2017
pVotingAgeCitizenFemale_m
% Female citizen, 18 and over population, 2017 (MOE)
last_edited_date
Last date the feature was edited by ARC
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
The 2023 Jordan Population and Family Health Survey (JPFHS) is the eighth Population and Family Health Survey conducted in Jordan, following those conducted in 1990, 1997, 2002, 2007, 2009, 2012, and 2017–18. It was implemented by the Department of Statistics (DoS) at the request of the Ministry of Health (MoH).
The primary objective of the 2023 JPFHS is to provide up-to-date estimates of key demographic and health indicators. Specifically, the 2023 JPFHS: • Collected data at the national level that allowed calculation of key demographic indicators • Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality • Measured contraceptive knowledge and practice • Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery • Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and women age 15–49 • Conducted haemoglobin testing with eligible children age 6–59 months and women age 15–49 to gather information on the prevalence of anaemia • Collected data on women’s and men’s knowledge and attitudes regarding sexually transmitted infections and HIV/AIDS • Obtained data on women’s experience of emotional, physical, and sexual violence • Gathered data on disability among household members
The information collected through the 2023 JPFHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Jordan.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2023 JPFHS was the 2015 Jordan Population and Housing Census (JPHC) frame. The survey was designed to produce representative results for the country as a whole, for urban and rural areas separately, for each of the country’s 12 governorates, and for four nationality domains: the Jordanian population, the Syrian population living in refugee camps, the Syrian population living outside of camps, and the population of other nationalities. Each of the 12 governorates is subdivided into districts, each district into subdistricts, each subdistrict into localities, and each locality into areas and subareas. In addition to these administrative units, during the 2015 JPHC each subarea was divided into convenient area units called census blocks. An electronic file of a complete list of all of the census blocks is available from DoS. The list contains census information on households, populations, geographical locations, and socioeconomic characteristics of each block. Based on this list, census blocks were regrouped to form a general statistical unit of moderate size, called a cluster, which is widely used in various surveys as the primary sampling unit (PSU). The sample clusters for the 2023 JPFHS were selected from the frame of cluster units provided by the DoS.
The sample for the 2023 JPFHS was a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. In addition, the Syrian refugee camps in Zarqa and Mafraq each formed a special sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a twostage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and subdistrict within each sampling stratum. By using a probability proportional to size selection at the first stage of sampling, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Five questionnaires were used for the 2023 JPFHS: (1) the Household Questionnaire, (2) the Woman’s Questionnaire, (3) the Man’s Questionnaire, (4) the Biomarker Questionnaire, and (5) the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Jordan. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Arabic.
All electronic data files for the 2023 JPFHS were transferred via SynCloud to the DoS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July and completed in September 2023.
A total of 20,054 households were selected for the sample, of which 19,809 were occupied. Of the occupied households, 19,475 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 13,020 eligible women age 15–49 were identified for individual interviews; interviews were completed with 12,595 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 6,506 men age 15–59 were identified as eligible for individual interviews and 5,873 were successfully interviewed, yielding a response rate of 90%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2023 Jordan Population and Family Health Survey (2023 JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2023 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2023 JPFHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The 60 years and over column of data refers to the age of the householder for the estimates of households, occupied housing units, owner-occupied housing units, and renter-occupied housing units lines..The age specified on the population 15 years and over, population 25 years and over, population 30 years and over, civilian population 18 years and over, civilian population 5 years and over, population 1 years and over, population 5 years and over, and population 16 years and over lines refer to the data shown in the "Total" column while the second column is limited to the population 60 years and over..Telephone service data are not available for certain geographic areas due to problems with data collection of this question that occurred in 2019. Both ACS 1-year and ACS 5-year files were affected. It may take several years in the ACS 5-year files until the estimates are available for the geographic areas affected..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be...
These are synthetically generated unit and area level population and sample data that can be used for testing model-based unit-level small area methods. To prevent disclosure issues the datasets have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria. The data include geographical identifies and can be used for fitting unit-level (Battese-Harter and Fuller type) models and area level models (Fay-Herriott- type) models. The datasets are part of the R package emdi. Examples of the use of the data can be found in the emdi manual available via https://cran.r-project.org/web/packages/emdi/emdi.pdf and in Kreutzmann et al. (2019)
Kreutzmann, A. K., Pannier, S., Rojas-Perilla, N., Schmid, T., Templ, M., & Tzavidis, N. (2019). The R package emdi for the estimation and mapping of regional disaggregated indicators. Journal of Statistical Software, 91(7). https://doi.org/10.18637/jss.v091.i07
Reliable statistics are crucial for policy relevant research. Small Area Estimation (SAE) methods generate robust reliable and consistent statistics at geographical scales for which survey data are either non-existent or too sparse to provide direct estimates of acceptable accuracy. The last decade has seen a rapid increase in the use of SAE. Statistical agencies and Governmental organisations are actively developing their own suites of estimates. In the UK the Office for National Statistics (ONS) has responded to user demands by producing estimates of average household income for wards and using SAE to answer queries from local authorities, policy advisers and government departments. The Welsh Assembly Government (WAG) is actively seeking to develop capacity for SAE. Public Health England produces SAEs of adolescent smoking and chronic kidney disease. Initial demands for small area statistics are now shifting to requirements for more complex statistics that extend beyond averages and proportions to encompass estimates of statistical distributions, multidimensional indicators (e.g. inequality and deprivation indicators) and methods for replacing the Census and adjusting Census results for undercount. These developing requirements pose significant methodological and applied real-world challenges. These challenges are deepened by different methodological approaches to SAE remaining largely unconnected, locked in disciplinary silos. The technical presentation of SAE also impedes more widespread uptake by social scientists and understanding by users. The proposed programme of work aims to (a) develop novel SAE methodologies to better serve the needs of users and producers of SAE (b) bridge different methodological approaches to SAE, (c) apply SAE for answering substantive questions in the social sciences and (d) 'Mainstream' SAE within the quantitative social sciences through the creation of methodologically comprehensive and accessible resources. The project comprises three work packages of methodological innovative research designed to deepen the understanding of SAE and achieve the aforementioned aims. The project will capitalise on a cross-disciplinary research team drawn together through an NCRM methodological network and reflecting a large part of the SAE expertise in the UK. Through long-standing collaborations with national and international agencies in the UK, Mexico and Brazil, which are placed at the centre of the project, we enjoy access to individual level secondary survey and Census data. Collaboration with key SAE users will ensure that the project remains relevant to user needs and that methodologies are used for expanding the set of small area statistics currently available. The involvement of international experts ensures the quality and relevance of the research. Substantive outputs will include SAEs of attributes of interest to users, including income, inequality, deprivation, health, ethnicity and a realistic pseudo-Census dataset for use by other researchers. The project will advance knowledge across disciplines in the social sciences including social statistics, applied economics, human geography and sociology. It will additionally impact on the production of official and Census statistics. The project is committed to adding value to NCRM's training and capacity building activities by developing new resources.
The 2013 Turkey Demographic and Health Survey (TDHS-2013) is a nationally representative sample survey. The primary objective of the TDHS-2013 is to provide data on socioeconomic characteristics of households and women between ages 15-49, fertility, childhood mortality, marriage patterns, family planning, maternal and child health, nutritional status of women and children, and reproductive health. The survey obtained detailed information on these issues from a sample of women of reproductive age (15-49). The TDHS-2013 was designed to produce information in the field of demography and health that to a large extent cannot be obtained from other sources.
Specifically, the objectives of the TDHS-2013 included: - Collecting data at the national level that allows the calculation of some demographic and health indicators, particularly fertility rates and childhood mortality rates, - Obtaining information on direct and indirect factors that determine levels and trends in fertility and childhood mortality, - Measuring the level of contraceptive knowledge and practice by contraceptive method and some background characteristics, i.e., region and urban-rural residence, - Collecting data relative to maternal and child health, including immunizations, antenatal care, and postnatal care, assistance at delivery, and breastfeeding, - Measuring the nutritional status of children under five and women in the reproductive ages, - Collecting data on reproductive-age women about marriage, employment status, and social status
The TDHS-2013 information is intended to provide data to assist policy makers and administrators to evaluate existing programs and to design new strategies for improving demographic, social and health policies in Turkey. Another important purpose of the TDHS-2013 is to sustain the flow of information for the interested organizations in Turkey and abroad on the Turkish population structure in the absence of a reliable and sufficient vital registration system. Additionally, like the TDHS-2008, TDHS-2013 is accepted as a part of the Official Statistic Program.
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years and women age 15-49 years resident in the household.
Sample survey data [ssd]
The sample design and sample size for the TDHS-2013 makes it possible to perform analyses for Turkey as a whole, for urban and rural areas, and for the five demographic regions of the country (West, South, Central, North, and East). The TDHS-2013 sample is of sufficient size to allow for analysis on some of the survey topics at the level of the 12 geographical regions (NUTS 1) which were adopted at the second half of the year 2002 within the context of Turkey’s move to join the European Union.
In the selection of the TDHS-2013 sample, a weighted, multi-stage, stratified cluster sampling approach was used. Sample selection for the TDHS-2013 was undertaken in two stages. The first stage of selection included the selection of blocks as primary sampling units from each strata and this task was requested from the TURKSTAT. The frame for the block selection was prepared using information on the population sizes of settlements obtained from the 2012 Address Based Population Registration System. Settlements with a population of 10,000 and more were defined as “urban”, while settlements with populations less than 10,000 were considered “rural” for purposes of the TDHS-2013 sample design. Systematic selection was used for selecting the blocks; thus settlements were given selection probabilities proportional to their sizes. Therefore more blocks were sampled from larger settlements.
The second stage of sample selection involved the systematic selection of a fixed number of households from each block, after block lists were obtained from TURKSTAT and were updated through a field operation; namely the listing and mapping fieldwork. Twentyfive households were selected as a cluster from urban blocks, and 18 were selected as a cluster from rural blocks. The total number of households selected in TDHS-2013 is 14,490.
The total number of clusters in the TDHS-2013 was set at 642. Block level household lists, each including approximately 100 households, were provided by TURKSTAT, using the National Address Database prepared for municipalities. The block lists provided by TURKSTAT were updated during the listing and mapping activities.
All women at ages 15-49 who usually live in the selected households and/or were present in the household the night before the interview were regarded as eligible for the Women’s Questionnaire and were interviewed. All analysis in this report is based on de facto women.
Note: A more technical and detailed description of the TDHS-2013 sample design, selection and implementation is presented in Appendix B of the final report of the survey.
Face-to-face [f2f]
Two main types of questionnaires were used to collect the TDHS-2013 data: the Household Questionnaire and the Individual Questionnaire for all women of reproductive age. The contents of these questionnaires were based on the DHS core questionnaire. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the TDHS-2013 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2013 questionnaires, national and international population and health agencies were consulted for their comments.
The questionnaires were developed in Turkish and translated into English.
TDHS-2013 questionnaires were returned to the Hacettepe University Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all selected households and eligible respondents were returned from the field. A total of 29 data entry staff were trained for data entry activities of the TDHS-2013. The data entry of the TDHS-2013 began in late September 2013 and was completed at the end of January 2014.
The data were entered and edited on microcomputers using the Census and Survey Processing System (CSPro) software. CSPro is designed to fulfill the census and survey data processing needs of data-producing organizations worldwide. CSPro is developed by MEASURE partners, the U.S. Bureau of the Census, ICF International’s DHS Program, and SerPro S.A. CSPro allows range, skip, and consistency errors to be detected and corrected at the data entry stage. During the data entry process, 100% verification was performed by entering each questionnaire twice using different data entry operators and comparing the entered data.
In all, 14,490 households were selected for the TDHS-2013. At the time of the listing phase of the survey, 12,640 households were considered occupied and, thus, eligible for interview. Of the eligible households, 93 percent (11,794) households were successfully interviewed. The main reasons the field teams were unable to interview some households were because some dwelling units that had been listed were found to be vacant at the time of the interview or the household was away for an extended period.
In the interviewed 11,794 households, 10,840 women were identified as eligible for the individual interview, aged 15-49 and were present in the household on the night before the interview. Interviews were successfully completed with 9,746 of these women (90 percent). Among the eligible women not interviewed in the survey, the principal reason for nonresponse was the failure to find the women at home after repeated visits to the household.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TDHS-2013 to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TDHS-2013 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Obtaining robust estimates of population abundance is a central challenge hindering the conservation and management of many threatened and exploited species. Close-kin mark-recapture (CKMR) is a genetics-based approach that has strong potential to improve monitoring of data-limited species by enabling estimates of abundance, survival, and other parameters for populations that are challenging to assess. However, CKMR models have received limited sensitivity testing under realistic population dynamics and sampling scenarios, impeding application of the method in population monitoring programs and stock assessments. Here, we use individual-based simulation to examine how unmodeled population dynamics and aging uncertainty affect the accuracy and precision of CKMR parameter estimates under different sampling strategies. We then present adapted models that correct the biases that arise from model misspecification. Our results demonstrate that a simple base-case CKMR model produces robust estimates of population abundance with stable populations that breed annually; however, if a population trend or non-annual breeding dynamics are present, or if year-specific estimates of abundance are desired, a more complex CKMR model must be constructed. In addition, we show that CKMR can generate reliable abundance estimates for adults from a variety of sampling strategies, including juvenile-focused sampling where adults are never directly observed (and aging error is minimal). Finally, we apply a CKMR model that has been adapted for population growth and intermittent breeding to two decades of genetic data from juvenile lemon sharks (Negaprion brevirostris) in Bimini, Bahamas, to demonstrate how application of CKMR to samples drawn solely from juveniles can contribute to monitoring efforts for highly mobile populations. Overall, this study expands our understanding of the biological factors and sampling decisions that cause bias in CKMR models, identifies key areas for future inquiry, and provides recommendations that can aid biologists in planning and implementing an effective CKMR study, particularly for long-lived data-limited species.
Prior to the arrival of European explorers in the Americas in 1492, it is estimated that the population of the continent was around sixty million people. Over the next two centuries, most scholars agree that the indigenous population fell to just ten percent of its pre-colonization level, primarily due to the Old World diseases (namely smallpox) brought to the New World by Europeans and African slaves, as well as through violence and famine.
Distribution
It is thought that the most densely populated region of the Americas was in the fertile Mexican valley, home to over one third of the entire continent, including several Mesoamerican civilizations such as the Aztec empire. While the mid-estimate shows a population of over 21 million before European arrival, one estimate suggests that there were just 730,000 people of indigenous descent in Mexico in 1620, just one hundred years after Cortes' arrival. Estimates also suggest that the Andes, home to the Incas, was the second most-populous region in the Americas, while North America (in this case, the region north of the Rio Grande river) may have been the most sparsely populated region. There is some contention as to the size of the pre-Columbian populations in the Caribbean, as the mass genocides, forced relocation, and pandemics that followed in the early stages of Spanish colonization make it difficult to predict these numbers.
Varying estimates Estimating the indigenous populations of the Americas has proven to be a challenge and point of contention for modern historians. Totals from reputable sources range from 8.4 million people to 112.55 million, and while both of these totals were published in the 1930s and 1960s respectively, their continued citation proves the ambiguity surrounding this topic. European settlers' records from the 15th to 17th centuries have also created challenges, due to their unrealistic population predictions and inaccurate methodologies (for example, many early settlers only counted the number of warriors in each civilization). Nonetheless, most modern historians use figures close to those given in the "Middle estimate" shown here, with similar distributions by region.
This map symbolizes the relative population counts for the City's 12 Data Divisions, aggregating the tract-level estimates from the the Census Bureau's American Community Survey 2021 five-year samples. Please refer to the map's legend for context to the color shading -- darker hues indicate more population.If you click on each Data Division, you can view other Census demographic information about that Data Division in addition to the population count.About the Census Data:The data comes from the U.S. Census Bureau's American Community Survey's 2017-2021 five-year samples. The American Community Survey (ACS) is an ongoing survey conducted by the federal government that provides vital information annually about America and its population. Information from the survey generates data that help determine how more than $675 billion in federal and state funds are distributed each year.For more information about the Census Bureau's ACS data and process of constructing the survey, visit the ACS's About page.About the City's Data Divisions:As a planning analytic tool, an interdepartmental working group divided Rochester into 12 “data divisions.” These divisions are well-defined and static so they are positioned to be used by the City of Rochester for statistical and planning purposes. Census data is tied to these divisions and serves as the basis for analyses over time. As such, the data divisions are designed to follow census boundaries, while also recognizing natural and human-made boundaries, such as the River, rail lines, and highways. Historical neighborhood boundaries, while informative in the division process, did not drive the boundaries. Data divisions are distinct from the numerous neighborhoods in Rochester. Neighborhood boundaries, like quadrant boundaries, police precincts, and legislative districts often change, which makes statistical analysis challenging when looking at data over time. The data division boundaries, however, are intended to remain unchanged. It is hoped that over time, all City data analysts will adopt the data divisions for the purpose of measuring change over time throughout the city.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show sex and age by race and by Strong, Prosperous, And Resilient Communities Challenge in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here).
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.
National
Sample survey data
SAMPLE DESIGN AND IMPLEMENTATION
The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.
The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.
UPDATING OF SAMPLING FRAME
Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).
The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.
Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.
Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.
A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract
Readme
Data files and code for all analyses and figures presented in the paper. The two data files are provided in csv format (SightingData.csv, OccupancyData.csv). There are five code files written for R, but some the main analysis requires software JAGS. The main code (IPM_Code.txt) contains a description of the data, code for loading and managing the data, and for fitting the integrated population model. The other files contain custom written functions (Functions.txt), code for the density dependence test (DensityDependence_Code.txt), code for the retrospective analyses (tLTRE_Code.txt) and code for miscellaneous statistics and figure generation (Figure_Code.txt).
In 2023, approximately 86 percent of the population in Papua New Guinea were living in rural areas. In comparison, approximately eight percent of the population in Japan were living in rural areas that year. Urbanization and development Despite the desirable outcomes that urbanization entails, these rapid demographic shifts have also brought about unintended changes. For instance, in countries like India, rapid urbanization has led to unsustainable and crowded cities, with half of the urban population in India estimated to live in slums. In China, population shifts from rural to urban areas have aggravated regional economic disparities. For example, the migration of workers into coastal cities has made possible the creation of urban clusters of immense economic magnitude, with the Yangtze River Delta city cluster accounting for about a fifth of the country’s gross domestic product. Megacities and their future Home to roughly 60 percent of the world’s population, the Asia-Pacific region also shelters most of the globe’s largest urban agglomerations. Megacities, a term used for cities or urban areas with a population of over ten million people, are characterized by high cultural diversity and advanced infrastructure. As a result, they create better economic opportunities, and they are often hubs of innovation. For instance, many megacities in the Asia-Pacific region offer high local purchasing power to their residents. Despite challenges like pollution, income inequality, or the rising cost of living, megacities in the Asia-Pacific region have relatively high population growth rates and are expected to expand.
The 2015-16 Armenia Demographic and Health Survey (2015-16 ADHS) is the fourth in a series of nationally representative sample surveys designed to provide information on population and health issues. It is conducted in Armenia under the worldwide Demographic and Health Surveys program. Specifically, the objective of the 2015-16 ADHS is to provide current and reliable information on fertility and abortion levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutritional status of young children, childhood mortality, maternal and child health, domestic violence against women, child discipline, awareness and behavior regarding AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking, tuberculosis, and anemia. The survey obtained detailed information on these issues from women of reproductive age and, for certain topics, from men as well.
The 2015-16 ADHS results are intended to provide information needed to evaluate existing social programs and to design new strategies to improve the health of and health services for the people of Armenia. Data are presented by region (marz) wherever sample size permits. The information collected in the 2015-16 ADHS will provide updated estimates of basic demographic and health indicators covered in the 2000, 2005, and 2010 surveys.
The long-term objective of the survey includes strengthening the technical capacity of major government institutions, including the NSS. The 2015-16 ADHS also provides comparable data for longterm trend analysis because the 2000, 2005, 2010, and 2015-16 surveys were implemented by the same organization and used similar data collection procedures. It also adds to the international database of demographic and health–related information for research purposes.
National coverage
The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sample was designed to produce representative estimates of key indicators at the national level, for Yerevan, and for total urban and total rural areas separately. Many indicators can also be estimated at the regional (marz) level.
The sampling frame used for the 2015-16 ADHS is the Armenia Population and Housing Census, which was conducted in Armenia in 2011 (APHC 2011). The sampling frame is a complete list of enumeration areas (EAs) covering the whole country, a total number of 11,571 EAs, provided by the National Statistical Service (NSS) of Armenia, the implementing agency for the 2015-16 ADHS. This EA frame was created from the census data base by summarizing the households down to EA level. A representative probability sample of 8,749 households was selected for the 2015-16 ADHS sample. The sample was selected in two stages. In the first stage, 313 clusters (192 in urban areas and 121 in rural areas) were selected from a list of EAs in the sampling frame. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey. Appendix A provides additional information on the sample design of the 2015-16 Armenia DHS. Because of the approximately equal sample size in each marz, the sample is not self-weighting at the national level, and weighting factors have been calculated, added to the data file, and applied so that results are representative at the national level.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Five questionnaires were used for the 2015-16 ADHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Armenia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Armenian. They were pretested in September-October 2015.
The processing of the 2015-16 ADHS data began shortly after fieldwork commenced. All completed questionnaires were edited immediately by field editors while still in the field and checked by the supervisors before being dispatched to the data processing center at the NSS central office in Yerevan. These completed questionnaires were edited and entered by 15 data processing personnel specially trained for this task. All data were entered twice for 100 percent verification. Data were entered using the CSPro computer package. The concurrent processing of the data was an advantage because the senior ADHS technical staff were able to advise field teams of problems detected during the data entry. In particular, tables were generated to check various data quality parameters. Moreover, the double entry of data enabled easy comparison and identification of errors and inconsistencies. As a result, specific feedback was given to the teams to improve performance. The data entry and editing phase of the survey was completed in June 2016.
A total of 8,749 households were selected in the sample, of which 8,205 were occupied at the time of the fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. The number of occupied households successfully interviewed was 7,893, yielding a household response rate of 96 percent. The household response rate in urban areas (96 percent) was nearly the same as in rural areas (97 percent).
In these households, a total of 6,251 eligible women were identified; interviews were completed with 6,116 of these women, yielding a response rate of 98 percent. In one-half of the households, a total of 2,856 eligible men were identified, and interviews were completed with 2,755 of these men, yielding a response rate of 97 percent. Among men, response rates are slightly lower in urban areas (96 percent) than in rural areas (97 percent), whereas rates for women are the same in urban and in rural areas (98 percent).
The 2015-16 ADHS achieved a slightly higher response rate for households than the 2010 ADHS (NSS 2012). The increase is only notable for urban households (96 percent in 2015-16 compared with 94 percent in 2010). Response rates in all other categories are very close to what they were in 2010.
SAS computer software were used to calculate sampling errors for the 2015-16 ADHS. The programs used the Taylor linearization method of variance estimation for means or proportions and the Jackknife repeated replication method for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Nutritional status of children based on the NCHS/CDC/WHO International Reference Population - Vaccinations by background characteristics for children age 18-29 months
See details of the data quality tables in Appendix C of the survey final report.
The number of young women between the ages of 15 and 49 is expected to increase worldwide between 2013 and 2025. In 2013, the total number of women globally was 1.8 billion and that is expected to increase to almost 2 billion by 2025. The U.S. accounts for a small proportion of the total number of women globally at just 74.7 million in 2013.
Global demographics
Most recent estimates place the total global population at approximately 7.7 billion people. In mid-2018 the continent with the largest proportion of the global population was Asia, followed by Africa. While North America and Oceania were some of the least populated areas of the world. The age distribution of the population varies by region as well. For example, the percentage of the global population between the ages of 15 and 64 years varies between 56 percent and 68 percent.
Women’s health worldwide
Women face different health challenges depending on the region and country. One important global health issue is maternal mortality. The country with the highest maternal mortality rate in 2015 was Sierra Leone. The country with the highest estimated birth rate between 2015 and 2020 is expected to be Niger, which is also among the countries with the highest maternal mortality rate. Among developed nations, the United States had the highest maternal mortality rate in 2015.
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.