Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of India population from 1950 to 2025. United Nations projections are also included through the year 2100.
The principal objective of the Ethiopia Demographic and Health Survey (DHS) is to provide current and reliable data on fertility and family planning behavior, child mortality, children’s nutritional status, the utilization of maternal and child health services, and knowledge of HIV/AIDS. This information is essential for informed policy decisions, planning, monitoring, and evaluation of programs on health in general and reproductive health in particular at both the national and regional levels. A long-term objective of the survey is to strengthen the technical capacity of the Central Statistical Authority to plan, conduct, process, and analyze data from complex national population and health surveys. Moreover, the 2000 Ethiopia DHS is the first survey of its kind in the country to provide national and regional estimates on population and health that are comparable to data collected in similar surveys in other developing countries. As part of the worldwide DHS project, the Ethiopia DHS data add to the vast and growing international database on demographic and health variables. The Ethiopia DHS collected demographic and health information from a nationally representative sample of women and men in the reproductive age groups 15-49 and 15-59, respectively.
The Ethiopia DHS was carried out under the aegis of the Ministry of Health and was implemented by the Central Statistical Authority. ORC Macro provided technical assistance through its MEASURE DHS+ project. The survey was principally funded by the Essential Services for Health in Ethiopia (ESHE) project through a bilateral agreement between the United States Agency for International Development (USAID) and the Federal Democratic Republic of Ethiopia. Funding was also provided by the United Nations Population Fund (UNFPA).
National
Sample survey data
The Ethiopia DHS used the sampling frame provided by the list of census enumeration areas (EAs) with population and household information from the 1994 Population and Housing Census. A proportional sample allocation was discarded because this procedure yielded a distribution in which 80 percent of the sample came from three regions, 16 percent from four regions and 4 percent from five regions. To avoid such an uneven sample allocation among regions, it was decided that the sample should be allocated by region in proportion to the square root of the region's population size. Additional adjustments were made to ensure that the sample size for each region included at least 700 households, in order to yield estimates with reasonable statistical precision.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The Ethiopia DHS used three questionnaires: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire, which were based on model survey instruments developed for the international MEASURE DHS+ project. The questionnaires were specifically geared toward obtaining the kind of information needed by health and family planning program managers and policymakers. The model questionnaires were then adapted to local conditions and a number of additional questions specific to on-going health and family planning programs in Ethiopia were added. These questionnaires were developed in the English language and translated into the five principal languages in use in the country: Amarigna, Oromigna, Tigrigna, Somaligna, and Afarigna. They were then independently translated back to English and appropriate changes were made in the translation of questions in which the back-translated version did not compare well with the original English version. A pretest of all three questionnaires was conducted in the five local languages in November 1999.
All usual members in a selected household and visitors who stayed there the previous night were enumerated using the Household Questionnaire. Specifically, the Household Questionnaire obtained information on the relationship to the head of the household, residence, sex, age, marital status, parental survivorship, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. Women age 15-49 in all selected households and all men age 15-59 in every fifth selected household, whether usual residents or visitors, were deemed eligible, and were interviewed. The Household Questionnaire also obtained information on some basic socioeconomic indicators such as the number of rooms, the flooring material, the source of water, the type of toilet facilities, and the ownership of a variety of durable items. Information was also obtained on the use of impregnated bednets, and the salt used in each household was tested for its iodine content. All eligible women and all children born since Meskerem 1987 in the Ethiopian Calendar, which roughly corresponds to September 1994 in the Gregorian Calendar, were weighed and measured.
The Women’s Questionnaire collected information on female respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunization and health, marriage, fertility preferences, and attitudes about family planning, husband’s background characteristics and women’s work, knowledge of HIV/AIDS and other sexually transmitted infections (STIs).
The Men’s Questionnaire collected information on the male respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, and knowledge of HIV/AIDS and STIs.
A total of 14,642 households were selected for the Ethiopia DHS, of which 14,167 were found to be occupied. Household interviews were completed for 99 percent of the occupied households. A total of 15,716 eligible women from these households and 2,771 eligible men from every fifth household were identified for the individual interviews. The response rate for eligible women is slightly higher than for eligible men (98 percent compared with 94 percent, respectively). Interviews were successfully completed for 15,367 women and 2,607 men.
There is no difference by urban-rural residence in the overall response rate for eligible women; however, rural men are slightly more likely than urban men to have completed an interview (94 percent and 92 percent, respectively). The overall response rate among women by region is relatively high and ranges from 93 percent in the Affar Region to 99 percent in the Oromiya Region. The response rate among men ranges from 83 percent in the Affar Region to 98 percent in the Tigray and Benishangul-Gumuz regions.
Note: See summarized response rates by place of residence in Table A.1.1 and Table A.1.2 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Ethiopia DHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the Ethiopia DHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the Ethiopia DHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the Ethiopia DHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
10-Year ASCVD risk stratified by metabolic syndrome severity Z-scores in MetS positive subjects (n = 122).
As of 2024, South Africa's population increased, counting approximately 63 million inhabitants. Of these, roughly 27.5 million were aged 0-24, while 654,000 people were 80 years or older. Gauteng and Cape Town are the most populated Although South Africa’s yearly population growth has been dropping since 2013, the growth rate still stood above the world average in 2021. That year, the global population increase reached 0.94 percent, while for South Africa, the rise was 1.23 percent. The majority of the people lived in the borders of Gauteng, the smallest of the nine provinces in land area. The number of people residing there amounted to 15.9 million in 2021. Although Western Cape was the third-largest province, one of it cities, Cape Town, had the highest number of inhabitants in the country, at 3.4 million. An underemployed younger population South Africa has a large population under 14, who will be looking for job opportunities in the future. However, the country's labor market has had difficulty integrating these youngsters. Specifically, as of the third quarter of 2022, the unemployment rate reached close to 60 percent and 42.9 percent among people aged 15-24 and 25-34 years, respectively. In the same period, some 25 percent of the individuals between 15 and 24 years were economically active, while the labor force participation rate was higher among people aged 25 to 34, at 71.2 percent.
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This zip file contains the Standard Area Measurements (SAM) for the administrative areas in the United Kingdom as at 31 December 2022. This includes the wards, local authority districts, counties and regions in England and the countries. All measurements provided are ‘flat’ as they do not take into account variations in relief e.g. mountains and valleys. Measurements are given in hectares (10,000 square metres) to 2 decimal places. Four types of measurements are included: total extent (AREAEHECT), area to mean high water (coastline) (AREACHECT), area of inland water (AREAIHECT) and area to mean high water excluding area of inland water (land area) (AREALHECT). The Eurostat-recommended approach is to use the ‘land area’ measurement to compile population density figures.Change in the ward name W05001063 Pontlliew and Tircoed should have been called Pontlliw and Tircoed and we have made that change.This is a version 2 of the data as there was an error in the calculation of the Local Authorities, Counties, Regions, and CountriesClick the Download button to download the files
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
The statistic shows the gross domestic product (GDP) per capita in the United States from 1987 to 2023, with projections up until 2029. In 2023, the gross domestic product per capita in the United States amounted to around 81,632.25 U.S. dollars. Thus, the United States is one of the countries with the largest GDP per capita worldwide. See the U.S. GDP growth rate here and the US GDP for further information. For comparison, per capita GDP in China had reached about 5,553 U.S. dollars in 2011.
Gross domestic product of the United States
The gross domestic product (GDP) of a country is an economic key figure, as it represents the market value of goods and services produced in a country within one year. The United States’ GDP) is increasing consistently, and it is expected to continue growing. On a global scale, the U.S. share of GDP adjusted for Purchasing Power Parity has been in the range of 20 percent over the last few years, give or take a few percentage points. The United States has the largest GDP worldwide, with a significant lead over China, Japan and Germany. Gross domestic product per capita is annual GDP divided by the average population from the same year, which allows for a GDP calculation per inhabitant of a country. Thus, a country with a high GDP, like the United States, can still have a low GDP per capita. Consequently, if compared to other countries, the United States does not rank among the top ten on this list .
Low income cut-offs (LICOs) before and after tax by community size and family size, in current dollars, annual.
In 2023, about 26.9 percent of Asian private households in the U.S. had an annual income of 200,000 U.S. dollars and more. Comparatively, around 13.9 percent of Black households had an annual income under 15,000 U.S. dollars.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of India population from 1950 to 2025. United Nations projections are also included through the year 2100.