In Czechia, the highest natural population increase in the observed period was recorded in 2010 at 10.3 thousand. In 2023, the natural population change was less than -21.6 thousand, meaning that the number of live births was lower than the number of deaths. Natural population change is the difference between the number of live births and deaths during a given period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population: Growth data was reported at 0.713 % in 2017. This records a decrease from the previous number of 0.734 % for 2016. United States US: Population: Growth data is updated yearly, averaging 0.979 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1.702 % in 1960 and a record low of 0.711 % in 2013. United States US: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
These data identify the mean annual population growth rate and ratio change in abundance of common raven (Corvus corax; ravens) populations from 1966 through 2018.
Population dynamics, its types. Population migration (external, internal), factors determining it, main trends. Impact of migration on population health.
Under the guidance of Moldoev M.I. Sir By Riya Patil and Rutuja Sonar
Abstract
Population dynamics influence development and vice versa, at various scale levels: global, continental/world-regional, national, regional, and local. Debates on how population growth affects development and how development affects population growth have already been subject of intensive debate and controversy since the late 18th century, and this debate is still ongoing. While these two debates initially focused mainly on natural population growth, the impact of migration on both population dynamics and development is also increasingly recognized. While world population will continue growing throughout the 21st century, there are substantial and growing contrasts between and within world-regions in the pace and nature of that growth, including some countries where population is stagnating or even shrinking. Because of these growing contrasts, population dynamics and their interrelationships with development have quite different governance implications in different parts of the world.
1. Population Dynamics
Population dynamics refers to the changes in population size, structure, and distribution over time. These changes are influenced by four main processes:
Birth rate (natality)
Death rate (mortality)
Immigration (inflow of people)
Emigration (outflow of people)
Types of Population Dynamics
Natural population change: Based on birth and death rates.
Migration-based change: Caused by people moving in or out of a region.
Demographic transition: A model that explains changes in population growth as societies industrialize.
Population distribution: Changes in where people live (urban vs rural).
2. Population Migration
Migration refers to the movement of people from one location to another, often across political or geographical boundaries.
Types of Migration
External migration (international):
Movement between countries.
Examples: Refugee relocation, labor migration, education.
Internal migration:
Movement within the same country or region.
Examples: Rural-to-urban migration, inter-state migration.
3. Factors Determining Migration
Migration is influenced by push and pull factors:
Push factors (reasons to leave a place):
Unemployment
Conflict or war
Natural disasters
Poverty
Lack of services or opportunities
Pull factors (reasons to move to a place):
Better job prospects
Safety and security
Higher standard of living
Education and healthcare access
Family reunification
4. Main Trends in Migration
Urbanization: Mass movement to cities for work and better services.
Global labor migration: Movement from developing to developed countries.
Refugee and asylum seeker flows: Due to conflict or persecution.
Circular migration: Repeated movement between two or more locations.
Brain drain/gain: Movement of skilled labor away from (or toward) a country.
5. Impact of Migration on Population Health
Positive Impacts:
Access to better healthcare (for migrants moving to better systems).
Skills and knowledge exchange among health professionals.
Remittances improving healthcare affordability in home countries.
Negative Impacts:
Migrants’ health risks: Increased exposure to stress, poor living conditions, and occupational hazards.
Spread of infectious diseases: Especially when health screening is lacking.
Strain on health services: In receiving areas, especially with sudden or large influxes.
Mental health challenges: Due to cultural dislocation, discrimination, or trauma.
Population dynamics is one of the fundamental areas of ecology, forming both the basis for the study of more complex communities and of many applied questions. Understanding population dynamics is the key to understanding the relative importance of competition for resources and predation in structuring ecological communities, which is a central question in ecology.
Population dynamics plays a central role in many approaches to preserving biodiversity, which until now have been primarily focused on a single species approach. The calculation of the intrinsic growth rate of a species from a life table is often the central piece of conservation plans. Similarly, management of natural resources, such as fisheries, depends on population dynamics as a way to determine appropriate management actions.
Population dynamics can be characterized by a nonlinear system of difference or differential equations between the birth sizes of consecutive periods. In such a nonlinear system, when the feedback elasticity of previous events on current birth size is larger, the more likely the dynamics will be volatile. Depending on the classification criteria of the population, the revealed cyclical behavior has various interpretations. Under different contextual scenarios, Malthusian cycles, Easterlin cycles, predator–prey cycles, dynastic cycles, and capitalist–laborer cycles have been introduced and analyzed
Generally, population dynamics is a nonlinear stochastic process. Nonlinearities tend to be complicated to deal with, both when we want to do analytic stochastic modelling and when analysing data. The way around the problem is to approximate the nonlinear model with a linear one, for which the mathematical and statistical theories are more developed and tractable. Let us assume that the population process is described as:
(1)Nt=f(Nt−1,εt)
where Nt is population density at time t and εt is a series of random variables with identical distributions (mean and variance). Function f specifies how the population density one time step back, plus the stochastic environment εt, is mapped into the current time step. Let us assume that the (deterministic) stationary (equilibrium) value of the population is N* and that ε has mean ε*. The linear approximation of Eq. (1) close to N* is then:
(2)xt=axt−1+bϕt
where xt=Nt−N*, a=f
f(N*,ε*)/f
N, b=ff(N*,ε*)/fε, and ϕt=εt−ε*
The term population refers to the members of a single species that can interact with each other. Thus, the fish in a lake, or the moose on an island, are clear examples of a population. In other cases, such as trees in a forest, it may not be nearly so clear what a population is, but the concept of population is still very useful.
Population dynamics is essentially the study of the changes in the numbers through time of a single species. This is clearly a case where a quantitative description is essential, since the numbers of individuals in the population will be counted. One could begin by looking at a series of measurements of the numbers of particular species through time. However, it would still be necessary to decide which changes in numbers through time are significant, and how to determine what causes the changes in numbers. Thus, it is more sensible to begin with models that relate changes in population numbers through time to underlying assumptions. The models will provide indications of what features of changes in numbers are important and what measurements are critical to make, and they will help determine what the cause of changes in population levels might be.
To understand the dynamics of biological populations, the study starts with the simplest possibility and determines what the dynamics of the population would be in that case. Then, deviations in observed populations from the predictions of that simplest case would provide information about the kinds of forces shaping the dynamics of populations. Therefore, in describing the dynamics in this simplest case it is essential to be explicit and clear about the assumptions made. It would not be argued that the idealized population described here would ever be found, but that focusing on the idealized population would provide insight into real populations, just as the study of Newtonian mechanics provides understanding of more realistic situations in physics.
Population migration
The vast majority of people continue to live in the countries where they were born —only one in 30 are migrants.
In most discussions on migration, the starting point is usually numbers. Understanding changes in scale, emerging trends, and shifting demographics related to global social and economic transformations, such as migration, help us make sense of the changing world we live in and plan for the future. The current global estimate is that there were around 281 million international migrants in the world in 2020, which equates to 3.6 percent of the global population.
Overall, the estimated number of international migrants has increased over the past five decades. The total estimated 281 million people living in a country other than their countries of birth in 2020 was 128 million more than in 1990 and over three times the estimated number in 1970.
There is currently a larger number of male than female international migrants worldwide and the growing gender gap has increased over the past 20 years. In 2000, the male to female split was 50.6 to 49.4 per cent (or 88 million male migrants and 86 million female migrants). In 2020 the split was 51.9 to 48.1 per cent, with 146 million male migrants and 135 million female migrants. The share of
The COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population growth rate by year from 1961 to 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>India population growth rate for 2022 was <strong>0.79%</strong>, a <strong>0.03% decline</strong> from 2021.</li>
<li>India population growth rate for 2021 was <strong>0.82%</strong>, a <strong>0.15% decline</strong> from 2020.</li>
<li>India population growth rate for 2020 was <strong>0.97%</strong>, a <strong>0.07% decline</strong> from 2019.</li>
</ul>Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
These data identify the mean annual population growth rate and ratio change in abundance of common raven (Corvus corax; ravens) populations from 1966 through 2018.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is published by the Research & Analytics Group at the Atlanta Regional Commission to show population change by utilizing the 2020 redistricting data and comparable data for 2010, 2000, and 1990 across multiple geographies for the State of Georgia. For a deep dive into the data model including every specific metric, see the Data Manifest. The manifest details ARC-defined naming conventions, names/descriptions and topics where applicable, summary levels; source tables; notes and so forth for all metrics.
It should be noted:The 2020 redistricting release is not as detailed in terms of data compared to ACS estimates; data include total population, population by race and ethnicity, and "voting age" population (i.e., adults) by race and ethnicity, adults are subtracted from the total population to show children (ages 0-17); total number of housing units, occupied housing units, and vacant housing units. Percent and change measures are calculated over four different Censuses.These data are expressed in terms of 2020 geographies such as the new 2020 Census tracts. This means that that historical data for geographies like cities have been estimated to the 2020 boundaries. For example, the city of Atlanta, which has made multiple annexations since 1990, has a higher estimated 1990 population of 400,452 (2020 boundaries) than the 394,017 reported in the 1990 Census (1990 boundaries).Due to changes in block geographies and annexations, 2010 population totals for custom geographies such as City of Atlanta NSAs may differ slightly from the numbers we have published in the past.The procedure to re-estimate historical data to 2020 blocks often results in fractional population (e.g., 1.25 instead of 1 or 2). Counts have been rounded to the nearest whole, but to be more precise, all aggregation, percent, and change measures were performed pre-rounding. Some change measures may appear curious as a result. For example, 100.4 - 20.8 = 79.6 which rounds to 80. But if rounded first, 100.4 rounds down to 100, 20.8 rounds up to 21; 100 - 21 = 79.Asian and Pacific Islander categories are combined to maximize compatibility with the 1990 release, which reported the two groups as a single category. Caution should be exercised with 1990 race data because the Census Bureau changed to the current system (which allows people to identify as biracial or multiracial) starting only in 2000.The "other" race category includes American Indian and Alaska Natives, people identifying with "some other race" and (for 2000 forward), people who identify as biracial or multiracial.For more information regarding Decennial Census source data, visit 2020 Census website
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The three indicators are all expressed as the change in the number of persons per 1000 persons of average population: total change, natural change (live births minus deaths) and net migration (including statistical adjustment). The net migration plus adjustment is calculated as the difference between the total change and the natural change of the population.
This map is part of an interactive Story Map series about global change in the US.With the global human population expected to exceed 8 billion people by 2030, our species is already irreversibly changing the future of our planet. The US itself is expected to grow by 16.5% to over 360 million people, making it the third largest country in the world, behind India and China. This population increase isn’t distributed evenly - 81% of people will live in cities, urban, and suburban areas, which will continue to shape how resources are produced, transported, and consumed. The percent of foreign-born and second-generation immigrants in the US is also expected to rise in the future, contributing to an increasingly diverse population. Across the globe, immigration will likely account for significant population changes in the near future, as climate change fuels drought, crop failures, and political instability, creating climate refugees particularly among countries who do not have the infrastructure to mitigate or adapt to global change. Numbers aren’t the only thing that matter: people of different socioeconomic backgrounds use resources differently, both within and between countries.If the rest of the world used energy as intensely as the United States does, the world population would need more than 4 entire Earths to provide us with the resources to feed this rate consumption. This unfortunately means that even regions of the US that contribute less towards the problems of global change will still feel their impacts. To ensure a high quality of life for all citizens, we must address not only population growth, but also excess consumption of and reliance on resources across different regions. Geographic, population, and economic differences among regions can provide opportunities for success in the face of global change. Renewable energy sources have created entrepreneurial economic ventures, and communities have found environmental solutions through forming sustainable local food systems. Environmental justice movements are working now to ensure that all citizens have access to nature, recreational areas, and a healthy future for all.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vietnam VN: Population: Growth data was reported at 1.022 % in 2017. This records a decrease from the previous number of 1.060 % for 2016. Vietnam VN: Population: Growth data is updated yearly, averaging 2.168 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 3.021 % in 1960 and a record low of 0.928 % in 2006. Vietnam VN: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Vietnam – Table VN.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Theory suggests that the drivers of demographic variation and local adaptation are shared and may feedback on one other. Despite some evidence for these links in controlled settings, the relationship between local adaptation and demography remains largely unexplored in natural conditions. Using 10 years of demographic data and two reciprocal transplant experiments, we tested predictions about the relationship between the magnitude of local adaptation and demographic variation (population growth rates and their elasticities to vital rates) across 10 populations of a well-studied annual plant. In both years, we found a strong unimodal relationship between mean home-away local adaptation and stochastic population growth rates. Other predicted links were either weakly or not supported by our data. Our results suggest that declining and rapidly growing populations exhibit reduced local adaptation, potentially due to maladaptation and relaxed selection, respectively., This dataset includes long-term data collected using observations and environmetnal sensors, data on population dynamics derived from field census data, and data from 2 years of reciprocal transplants in field conditions. Data describing population dynamics have been processed from raw census data using matrix population models. All other data processing is performed using code that is archived along with the data., Annotated code necessary to reproduce the analyses and figures presented in the associated manuscript are included in this archive., # Data from: Local adaptation is highest in populations with stable long-term growth
Lauren N. Carley et al.
Details on the purpose of each file in these folders, and their subdirectories, is provided below, following the general outline:
NOTE: Throughout the whole directory, variables in datasets are unitless unless otherwise defined, and "NA" values represent missing data unless otherwise defined.
This directory contains all of the other subdirectories, which take you through data processing, modeling, and analysis step by step.
It also contains one file:
README.txt
You are curren...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Mali population growth rate for 2022 was <strong>3.10%</strong>, a <strong>0.06% decline</strong> from 2021.</li>
<li>Mali population growth rate for 2021 was <strong>3.16%</strong>, a <strong>0.02% increase</strong> from 2020.</li>
<li>Mali population growth rate for 2020 was <strong>3.14%</strong>, a <strong>0.02% increase</strong> from 2019.</li>
</ul>Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
There are three components of change: births, deaths, and migration. The change in the population from births and deaths is often combined and referred to as natural increase or natural change. Populations grow or shrink depending on if they gain people faster than they lose them. Looking at an area’s unique combination of natural change and migration helps us understand why its population is changing, and how quickly the change is occurring.Natural IncreaseNatural change is the difference between births and deaths in a population. Often times, natural change is positive, which means that more babies are being born than people are dying. This positive natural change is referred to as natural increase. Examples of natural increase exist across the United States, one being the Salt Lake City metro area in Utah. Between 2014 and 2015, Salt Lake City had around 19,100 births and 6,400 deaths. Since there were about 12,700 more births than deaths, Salt Lake City had a natural increase of about 12,700 people, making natural increase a key reason why its population grew over the year.The opposite of natural increase is called natural decrease, where more people are dying than babies being born, which can cause a population to shrink. Areas with aging populations often have natural decrease. Two states had natural decrease between 2014 and 2015, Maine and West Virginia. Between 2014 and 2015, Maine had 450 more deaths than births and West Virginia had 940 more deaths than births. In both cases, natural decrease was one of the reasons why their populations shrank between 2014 and 2015 in our latest estimates.MigrationMigration is the movement of people from one area to another. It is often expressed as net migration, which is the difference between how many people move into and out of an area. When net migration is positive, a population has more people moving in than out. We split migration into domestic migration and international migration.Domestic migration refers to people moving between areas within the United States, and is often one of the largest contributors to population change. Regionally, the South gains the most net domestic migrants, with roughly 440,000 more people moving into southern states than leaving them between 2014 and 2015. Sometimes net domestic migration is negative, in which case more people are moving away than are moving in. The Chicago metro area in Illinois, Indiana, and Wisconsin lost about 80,000 people through migration between 2014 and 2015, which is consistent with a long-standing pattern of negative net domestic migration for the metro area.International migration refers to people moving into and out of the United States, and consists of a diverse group of people such as foreign-born immigrants from many countries around the world, members of the U.S. Armed Forces, and U.S. citizens working abroad. Some areas, like the Miami metro area in Florida, grow (in part) due to net international migration. Miami gained about 70,000 net international migrants between 2014 and 2015, making net international migration a major factor in Miami’s population growth.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Understanding the influence of environmental variability on population dynamics is a fundamental goal of ecology. Theory suggests that, for populations in variable environments, temporal correlations between demographic vital rates (e.g., growth, survival, reproduction) can increase (if positive) or decrease (if negative) the variability of year-to-year population growth. Because this variability generally decreases long-term population viability, vital rate correlations may importantly affect population dynamics in stochastic environments. Despite long-standing theoretical interest, it is unclear whether vital rate correlations are common in nature, whether their directions are predominantly negative or positive, and whether they are of sufficient magnitude to warrant broad consideration in studies of stochastic population dynamics. We used long-term demographic data for three perennial plant species, hierarchical Bayesian parameterization of population projection models, and stochastic simulations to address the following questions: (1) What are the sign, magnitude, and uncertainty of temporal correlations between vital rates? (2) How do specific pairwise correlations affect the year-to-year variability of population growth? (3) Does the net effect of all vital rate correlations increase or decrease year-to-year variability? (4) What is the net effect of vital rate correlations on the long-term stochastic population growth rate (λS)? We found only four moderate to strong correlations, both positive and negative in sign, across all species and vital rate pairs; otherwise, correlations were generally weak in magnitude and variable in sign. The net effect of vital rate correlations ranged from a slight decrease to an increase in the year-to-year variability of population growth, with average changes in variance ranging from -1% to +22%. However, vital rate correlations caused virtually no change in the estimates of λS (mean effects ranging from -0.01% to +0.17%). Therefore, the proportional changes in the variance of population growth caused by demographic correlations were too small on an absolute scale to importantly affect population growth and viability. We conclude that in our three focal populations and perhaps more generally, vital rate correlations have little effect on stochastic population dynamics. This may be good news for population ecologists, because estimating vital rate correlations and incorporating them into population models can be data-intensive and technically challenging.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Poland PL: Population: Growth data was reported at 0.015 % in 2017. This records an increase from the previous number of -0.043 % for 2016. Poland PL: Population: Growth data is updated yearly, averaging 0.363 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 3.336 % in 1960 and a record low of -1.044 % in 2000. Poland PL: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Poland – Table PL.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Components of population change by census metropolitan area and census agglomeration, single year of age, five-year age group and sex for the period from July 1 to June 30, annual, based on the Standard Geographical Classification (SGC) 2016. The components include births, deaths, immigrants, emigrants, returning emigrants, net temporary emigration, net interprovincial migration, net intraprovincial migration, net non-permanent residents and residual deviation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Togo TG: Population: Growth data was reported at 2.484 % in 2017. This records a decrease from the previous number of 2.524 % for 2016. Togo TG: Population: Growth data is updated yearly, averaging 2.690 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 4.754 % in 1968 and a record low of 0.949 % in 1962. Togo TG: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Togo – Table TG.World Bank: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ireland IE: Population: Growth data was reported at 1.218 % in 2017. This records an increase from the previous number of 1.129 % for 2016. Ireland IE: Population: Growth data is updated yearly, averaging 0.813 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 2.891 % in 2007 and a record low of -0.428 % in 1988. Ireland IE: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ireland – Table IE.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
In Czechia, the highest natural population increase in the observed period was recorded in 2010 at 10.3 thousand. In 2023, the natural population change was less than -21.6 thousand, meaning that the number of live births was lower than the number of deaths. Natural population change is the difference between the number of live births and deaths during a given period.