Whereas the population is expected to decrease somewhat until 2100 in Asia, Europe, and South America, it is predicted to grow significantly in Africa. While there were 1.55 billion inhabitants on the continent at the beginning of 2025, the number of inhabitants is expected to reach 3.81 billion by 2100. In total, the global population is expected to reach nearly 10.18 billion by 2100. Worldwide population In the United States, the total population is expected to steadily increase over the next couple of years. In 2024, Asia held over half of the global population and is expected to have the highest number of people living in urban areas in 2050. Asia is home to the two most populous countries, India and China, both with a population of over one billion people. However, the small country of Monaco had the highest population density worldwide in 2024. Effects of overpopulation Alongside the growing worldwide population, there are negative effects of overpopulation. The increasing population puts a higher pressure on existing resources and contributes to pollution. As the population grows, the demand for food grows, which requires more water, which in turn takes away from the freshwater available. Concurrently, food needs to be transported through different mechanisms, which contributes to air pollution. Not every resource is renewable, meaning the world is using up limited resources that will eventually run out. Furthermore, more species will become extinct which harms the ecosystem and food chain. Overpopulation was considered to be one of the most important environmental issues worldwide in 2020.
The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Before 2025, the world's total population is expected to reach eight billion. Furthermore, it is predicted to reach over 10 billion in 2060, before slowing again as global birth rates are expected to decrease. Moreover, it is still unclear to what extent global warming will have an impact on population development. A high share of the population increase is expected to happen on the African continent.
These charts show the trend in world population growth from the year 1CE to 2100, and the future decline in birth and death rates.
Future county population was based on projections for 2100 from the Spatially Explicit Regional Growth Model (SERGoM; Theobald 2005). SERGoM simulates population based on existing patterns of growth by census block, groundwater well and road density, and transportation distance to urban areas, while constraining the pattern of development to areas outside of protected areas and urban areas (Theobald 2005). The dataset here is a projection for a “baseline” growth scenario that assumes a similar trajectory to that of current urban growth (Bierwagen et al. 2010). SERGoM accuracy is estimated as 79–99% when compared to 1990 and 2000 census data, with the accuracy varying by urban/exurban/rural categories and increasing slightly with coarser resolution (Theobald 2005). The accuracy of future model predictions with different economic scenarios is most sensitive to fertility rates, which are subject to cultural change, economic recessions, and the current pattern of lands protected from development (Bierwagen et al. 2010). Bierwagen, B. G., D. M. Theobald, C. R. Pyke, A. Choate, P. Groth, J. V. Thomas, and P. Morefield. 2010. National housing and impervious surface scenarios for integrated climate impact assessments. Proceedings of the National Academy of Sciences of the United States of America 107:20887-20892. Theobald, D. M. 2005. Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecology and Society 10: article 32.
The methodology used to produce these projections differs from ICLUS v2.0 (https://cfpub.epa.gov/ncea/iclus/recordisplay.cfm?deid=322479). The demographic components of change (i.e., rates of fertility and mortality) for ICLUS v2.1 were taken directly from the Wittgenstein Centre Data Explorer (http://witt.null2.net/shiny/wic/). These projections were produced more recently than the Census projections used in ICLUS v2.0, and incorporate more recent observations of population change. SSP2 is a “middle-of-the-road” projection, where social, economic and technological trends do not shift markedly from historical patterns, resulting in a U.S. population of 455 million people by 2100. Domestic migration trends remain largely consistent with the recent past, however the amenity value of local climate (average precipitation and temperature for summer and winter) is used in ICLUS v2.1.1 to influence migration patterns. The name of the climate model used as the source of future climate patterns is included at the end of the file name (e.g., "GISS-E2-R" or "HadGEM2-ES"). The approach for incorporating climate change into the migration model is described in the ICLUS v2.0 documentation. The SSP5 narrative describes a rapidly growing and flourishing global economy that remains heavily dependent on fossil fuels, and a U.S. population that exceeds 730 million by 2100. ICLUS v2.1 land use projections under SSP5 result in a considerably larger expansion of developed lands relative to SSP2. The the amenity value of local climate (average precipitation and temperature for summer and winter) is used in ICLUS v2.1.1 to influence migration patterns. The name of the climate model used as the source of future climate patterns is included at the end of the file name (e.g., "GISS-E2-R" or "HadGEM2-ES"). The approach for incorporating climate change into the migration model is described in the ICLUS v2.0 documentation. RCP4.5 assumes that global greenhoue gas emissions increase into the latter part of the century, before leveling off and eventually stabilizing by 2100 as a result of various climate change policies. RCP8.5 assumes that global greenhoue gas emissions increase through the year 2100.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.
These charts shows the world trend in urban populations, people living in cities, from the year 1800 to 2100.
Climate and land-use change are major components of global environmental change with feedbacks between these components. The consequences of these interactions show that land use may exacerbate or alleviate climate change effects. Based on these findings it is important to use land-use scenarios that are consistent with the specific assumptions underlying climate-change scenarios. The Integrated Climate and Land-Use Scenarios (ICLUS) project developed land-use outputs that are based on a downscaled version of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines. ICLUS outputs are derived from a pair of models. A demographic model generates county-level population estimates that are distributed by a spatial allocation model (SERGoM v3) as housing density across the landscape. Land-use outputs were developed for the four main SRES storylines and a baseline ("base case"). The model is run for the conterminous USA and output is available for each scenario by decade to 2100. In addition to housing density at a 1 hectare spatial resolution, this project also generated estimates of impervious surface at a resolution of 1 square kilometer. This shapefile holds population data for all counties of the conterminous USA for all decades (2010-2100) and SRES population growth scenarios (A1, A2, B1, B2), as well as a 'base case' (BC) scenario, for use in the Integrated Climate and Land Use Scenarios (ICLUS) project.
The Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100 consists of county-level population projection scenarios of total population, and by age, sex, and race in five-year intervals for all U.S. counties for the period 2020 - 2100. These data have numerous potential uses and can serve as inputs for addressing questions involving sub-national demographic change in the United States in the near, middle- and long-term.
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
Between 1800 and 2021, the total population of each continent experienced consistent growth, however as growth rates varied by region, population distribution has fluctuated. In the early 19th century, almost 70 percent of the world's population lived in Asia, while fewer than 10 percent lived in Africa. By the end of this century, it is believed that Asia's share will fall to roughly 45 percent, while Africa's will be on course to reach 40 percent. 19th and 20th centuries Fewer than 2.5 percent of the world's population lived in the Americas in 1800, however the demographic transition, along with waves of migration, would see this share rise to almost 10 percent a century later, peaking at almost 14 percent in the 1960s. Europe's share of the global population also grew in the 19th century, to roughly a quarter in 1900, but fell thereafter and saw the largest relative decline during the 20th century. Asia, which has consistently been the world's most populous continent, saw its population share drop by the mid-1900s, but it has been around 60 percent since the 1970s. It is important to note that the world population has grown from approximately one to eight billion people between 1800 and the 2020s, and that declines in population distribution before 2020 have resulted from different growth rates across the continents. 21st century Africa's population share remained fairly constant throughout this time, fluctuating between 7.5 and 10 percent until the late-1900s, but it is set to see the largest change over the 21st century. As Europe's total population is now falling, and it is estimated that the total populations of Asia and the Americas will fall by the 2050s and 2070s respectively, rapid population growth in Africa will see a significant shift in population distribution. Africa's population is predicted to grow from 1.3 to 3.9 billion people over the next eight decades, and its share of the total population will rise to almost 40 percent. The only other continent whose population will still be growing at this time will be Oceania, although its share of the total population has never been more than 0.7 percent.
The Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), 2010-2100 consists of global spatial population projections at a resolution of one-eighth degree (7.5 arc-minutes) for urban, rural, and total population, consistent both quantitatively and qualitatively, with the SSPs at ten-year intervals for 2010-2100. Spatial demographic projections are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). This data set is produced based on a clear need for plausible alternative projections of spatial distribution of the population that can represent patterns of development consistent with the SSPs.
This layer shares SEDAC's population projections for U.S. counties for 2020-2100 in increments of 5 years, for each of five population projection scenarios known as Shared Socioeconomic Pathways (SSPs). This layer supports mapping, data visualizations, analysis and data exports.Before using this layer, read:The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview by Keywan Riahi, Detlef P. van Vuuren, Elmar Kriegler, Jae Edmonds, Brian C. O’Neill, Shinichiro Fujimori, Nico Bauer, Katherine Calvin, Rob Dellink, Oliver Fricko, Wolfgang Lutz, Alexander Popp, Jesus Crespo Cuaresma, Samir KC, Marian Leimbach, Leiwen Jiang, Tom Kram, Shilpa Rao, Johannes Emmerling, Kristie Ebi, Tomoko Hasegawa, Petr Havlik, Florian Humpenöder, Lara Aleluia Da Silva, Steve Smith, Elke Stehfest, Valentina Bosetti, Jiyong Eom, David Gernaat, Toshihiko Masui, Joeri Rogelj, Jessica Strefler, Laurent Drouet, Volker Krey, Gunnar Luderer, Mathijs Harmsen, Kiyoshi Takahashi, Lavinia Baumstark, Jonathan C. Doelman, Mikiko Kainuma, Zbigniew Klimont, Giacomo Marangoni, Hermann Lotze-Campen, Michael Obersteiner, Andrzej Tabeau, Massimo Tavoni. Global Environmental Change, Volume 42, 2017, Pages 153-168, ISSN 0959-3780, https://doi.org/10.1016/j.gloenvcha.2016.05.009.From the 2017 paper: "The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature."According to SEDAC, the purpose of this data is:"To provide subnational (county) population projection scenarios for the United States essential for understanding long-term demographic changes, planning for the future, and decision-making in a variety of applications."According to Francesco Bassetti of Foresight, "The SSP’s baseline worlds are useful because they allow us to see how different socioeconomic factors impact climate change. They include: a world of sustainability-focused growth and equality (SSP1); a “middle of the road” world where trends broadly follow their historical patterns (SSP2); a fragmented world of “resurgent nationalism” (SSP3); a world of ever-increasing inequality (SSP4);a world of rapid and unconstrained growth in economic output and energy use (SSP5).There are seven sublayers, each with county boundaries and an identical set of attribute fields containing projections for these seven groupings across the five SSPs and nine decades.Total PopulationBlack Non-Hispanic PopulationWhite Non-Hispanic PopulationOther Non-Hispanic PopulationHispanic PopulationMale PopulationFemale PopulationMethodology: Documentation for the Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, v1 (2020 – 2100)Data currency: This layer was created from a shapefile downloaded April 18, 2023 from SEDAC's Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, v1 (2020 – 2100)Enhancements found in this layer: Every field was given a field alias and field description created from SEDAC's Data Dictionary downloaded April 18, 2023. Citation: Hauer, M., and Center for International Earth Science Information Network - CIESIN - Columbia University. 2021. Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/dv72-s254. Accessed 18 April 2023.Hauer, M. E. 2019. Population Projections for U.S. Counties by Age, Sex, and Race Controlled to Shared Socioeconomic Pathway. Scientific Data 6: 190005. https://doi.org/10.1038/sdata.2019.5.Distribution Liability: CIESIN follows procedures designed to ensure that data disseminated by CIESIN are of reasonable quality. If, despite these procedures, users encounter apparent errors or misstatements in the data, they should contact SEDAC User Services at +1 845-465-8920 or via email at ciesin.info@ciesin.columbia.edu. Neither CIESIN nor NASA verifies or guarantees the accuracy, reliability, or completeness of any data provided. CIESIN provides this data without warranty of any kind whatsoever, either expressed or implied. CIESIN shall not be liable for incidental, consequential, or special damages arising out of the use of any data provided by CIESIN.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Albania Population Projection: Mid Year: Growth data was reported at -1.850 % in 2100. This records an increase from the previous number of -1.870 % for 2099. Albania Population Projection: Mid Year: Growth data is updated yearly, averaging -1.115 % from Jun 1989 (Median) to 2100, with 112 observations. The data reached an all-time high of 1.950 % in 1989 and a record low of -5.150 % in 1991. Albania Population Projection: Mid Year: Growth data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s Albania – Table AL.US Census Bureau: Demographic Projection.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Published in The Anthropocene Review. Abstract: Enormous growth of the world population during the last two centuries and its present slowing down pose questions about precedents in history and broader forces shaping the population size. Population estimates collected in an extensive survey of literature (873 estimates from 25 studies covering 1,000,000 BCE to 2100 CE) show that world population growth has proceeded in two distinct phases of acceleration followed by stoppage—from at least 25,000 BCE to 100 BCE, and from 400 CE to the present, interrupted by centuries of standstill and 10% decrease. Both phases can be fitted with a mathematical function that projects to a peak at 11.2 ± 1.5 billion around 2100 CE. An interaction model can account for this acceleration-stoppage pattern in quantitative detail: Technology grows exponentially, with rate boosted by population. Population grows exponentially, capped by Earth’s carrying capacity. Technology raises this cap, but only until it approaches Earth’s ultimate carrying capacity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Population Projection: Mid Year: Growth data was reported at 0.300 % in 2100. This stayed constant from the previous number of 0.300 % for 2099. Australia Population Projection: Mid Year: Growth data is updated yearly, averaging 0.750 % from Jun 1986 (Median) to 2100, with 115 observations. The data reached an all-time high of 2.230 % in 2008 and a record low of 0.300 % in 2100. Australia Population Projection: Mid Year: Growth data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s Australia – Table AU.US Census Bureau: Demographic Projection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Algeria DZ: Population Projection: Mid Year: Growth data was reported at 0.020 % in 2100. This records a decrease from the previous number of 0.040 % for 2099. Algeria DZ: Population Projection: Mid Year: Growth data is updated yearly, averaging 1.105 % from Jun 1987 (Median) to 2100, with 114 observations. The data reached an all-time high of 2.820 % in 1987 and a record low of 0.020 % in 2100. Algeria DZ: Population Projection: Mid Year: Growth data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s Algeria – Table DZ.US Census Bureau: Demographic Projection.
The first version of the Canadian Global Coupled Model, CGCM1, and its control climate are described by Flato et al. (1999). The atmospheric component of the model is essentially GCMII described by McFarlane et al. (1992). It is a spectral model with triangular truncation at wave number 32 (yielding a surface grid resolution of roughly 3.7 degrees x3.7 degrees) and 10 vertical levels. The ocean component is based on the GFDL MOM1.1 code and has a resolution of approximately 1.8 degrees x1.8 degrees and 29 vertical levels. The model uses heat and water flux adjustments obtained from uncoupled ocean and atmosphere model runs (of 10 years and 4000 years duration respectively), followed by an `adaption' procedure in which the flux adjustment fields are modified by a 14 year integration of the coupled model. A multi-century control simulation with the coupled model has been performed using the present-day CO2 concentration to evaluate the stability of the coupled model's climate, and to compare the modelled climate and its variability to that observed. An ensemble of four transient climate change simulations has been performed and is described in Boer et al. (1999a; b). Three of these simulations use an effective greenhouse gas forcing change corresponding to that observed from 1850 to the present, and a forcing change corresponding to an increase of CO2 at a rate of 1% per year (compounded) thereafter until year 2100. The direct forcing effect of sulphate aerosols is also included by increasing the surface albedo (as in Reader and Boer, 1999) based on loadings from the sulphur cycle model of Langner and Rodhe (1991). The fourth simulation considers the effect of greenhouse gas forcing only. The change in climate predicted by a model clearly depends directly on this specification of greenhouse gas (and aerosol) forcing, and of course these are not well known. The prescription described above is similar to the IPCC "business as usual" scenario, and using a standard scenario allows the results of this model to be compared to those of other modelling groups around the world. Some initial results from these simulations are presented below. The climate sensitivity of CGCM1 is about 3.5 degrees C. For the A2 emissions scenario the main emphasis is on a strengthening of regional and local culture, with a return to family values in many regions. The A2 world consolidates into a series of roughly continental economic regions, emphasizing local cultural roots. In some regions, increased religious participation leads many to reject a materialist path and to focus attention on contributing to the local community. Elsewhere, the trend is towards ncreased investment in education and science and growth in economic productivity. Social and political structures diversify with some regions moving towards stronger welfare systems and reduced income inequality, while others move towards "lean" government. Environmental concerns are relatively weak, although some attention is paid to bringing local pollution under control and maintaining local environmental amenities. The A2 world sees more international tensions and less cooperation than in A1 or B1. People, ideas and capital are less mobile so that technology diffuses slowly. International disparities in productivity, and hence income per capita, are maintained or increased. With the emphasis on family and community life, fertility rates decline only slowly, although they vary among regions. Hence, this scenario family has high population growth (to 15 billion by2100) with comparatively low incomes per capita relative to the A1 andB1 worlds, at US$7,200 in 2050 and US$16,000 in 2100.Technological change is rapid in some regions and slow in others as industry adjusts to local resource endowments, culture, and education levels. Regions with abundant energy and mineral resources evolve more resource intensive economies, while those poor in resources place very high priority on minimizing import dependence through technological innovation to improve resource efficiency and make use of substitute inputs. The fuel mix in different regions is determined primarily by resource availability. And divisions among regions persist in terms of their mix of technologies, with high-income but resource-poor regions shifting toward advance... Visit https://dataone.org/datasets/doi%3A10.5063%2FAA%2Fdpennington.40.5 for complete metadata about this dataset.
1960-2100 "the Belt and Road" countries' climate change risk data set (climate change trends and extreme events, food, ecology, population, economy and other risk carriers), including 1960, 1990, 20202, 2050, 2100 the Belt and Road countries' climate change to crop risk data, 2005, 2030, 2050, 2100 climate change to GDP risk data, 2020, 2050, 2100 climate change to population risk data, Data of precipitation, the highest temperature and the lowest temperature of countries along the the Belt and Road from 2020 to 2100. The meteorological data (precipitation, maximum temperature, minimum temperature) from 1960 to 2100 are derived from the RegCM model of the National Meteorological Center and CMIP6, and the food, ecological, population, and economic data of the countries along the the Belt and Road are derived from the food production data, ecological environment data, population density data, and GDP data in the Belt and Road Network of China and the Inter sectoral Impact Model Comparison Plan (ISI-MIP). Apply dynamic vegetation models to simulate the temporal changes of vegetation and the dynamic impacts of climate, and use threshold methods to analyze the risks of climate change on food, ecology, population, and economy.
Whereas the population is expected to decrease somewhat until 2100 in Asia, Europe, and South America, it is predicted to grow significantly in Africa. While there were 1.55 billion inhabitants on the continent at the beginning of 2025, the number of inhabitants is expected to reach 3.81 billion by 2100. In total, the global population is expected to reach nearly 10.18 billion by 2100. Worldwide population In the United States, the total population is expected to steadily increase over the next couple of years. In 2024, Asia held over half of the global population and is expected to have the highest number of people living in urban areas in 2050. Asia is home to the two most populous countries, India and China, both with a population of over one billion people. However, the small country of Monaco had the highest population density worldwide in 2024. Effects of overpopulation Alongside the growing worldwide population, there are negative effects of overpopulation. The increasing population puts a higher pressure on existing resources and contributes to pollution. As the population grows, the demand for food grows, which requires more water, which in turn takes away from the freshwater available. Concurrently, food needs to be transported through different mechanisms, which contributes to air pollution. Not every resource is renewable, meaning the world is using up limited resources that will eventually run out. Furthermore, more species will become extinct which harms the ecosystem and food chain. Overpopulation was considered to be one of the most important environmental issues worldwide in 2020.