The statistic shows the total population of India from 2019 to 2029. In 2023, the estimated total population in India amounted to approximately 1.43 billion people.
Total population in India
India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population.
With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year.
As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.
The share of projected population increase in Uttar Pradesh, India from 2011 until 2036 is expected to grow by nearly ** percent. By contrast, the estimated population increase in Uttarakhand is expected to be less than *** percent during the same time period.
Why project population?
Population projections for a country are becoming increasingly important now than ever before. They are used primarily by government policy makers and planners to better understand and gauge future demand for basic services that predominantly include water, food and energy. In addition, they also support in indicating major movements that may affect economic development and in turn, employment and labour productivity. Consequently, this leads to amending policies in order to better adapt to the needs of society and to various circumstances.
Demographic projections and health interventions Demographic figures serve the foremost purpose of improving health and health related services among the population. Some of the government interventions include antenatal and neonatal care with the aim of reducing maternal and neonatal mortality and morbidity rates. In addition, it also focuses on improving immunization coverage across the country. Further, demographic estimates help in better preempting the needs of growing populations, such as the geriatric population within a country.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Explore the Saudi Arabia World Development Indicators dataset , including key indicators such as Access to clean fuels, Adjusted net enrollment rate, CO2 emissions, and more. Find valuable insights and trends for Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, and India.
Indicator, Access to clean fuels and technologies for cooking, rural (% of rural population), Access to electricity (% of population), Adjusted net enrollment rate, primary, female (% of primary school age children), Adjusted net national income (annual % growth), Adjusted savings: education expenditure (% of GNI), Adjusted savings: mineral depletion (current US$), Adjusted savings: natural resources depletion (% of GNI), Adjusted savings: net national savings (current US$), Adolescents out of school (% of lower secondary school age), Adolescents out of school, female (% of female lower secondary school age), Age dependency ratio (% of working-age population), Agricultural methane emissions (% of total), Agriculture, forestry, and fishing, value added (current US$), Agriculture, forestry, and fishing, value added per worker (constant 2015 US$), Alternative and nuclear energy (% of total energy use), Annualized average growth rate in per capita real survey mean consumption or income, total population (%), Arms exports (SIPRI trend indicator values), Arms imports (SIPRI trend indicator values), Average working hours of children, working only, ages 7-14 (hours per week), Average working hours of children, working only, male, ages 7-14 (hours per week), Cause of death, by injury (% of total), Cereal yield (kg per hectare), Changes in inventories (current US$), Chemicals (% of value added in manufacturing), Child employment in agriculture (% of economically active children ages 7-14), Child employment in manufacturing, female (% of female economically active children ages 7-14), Child employment in manufacturing, male (% of male economically active children ages 7-14), Child employment in services (% of economically active children ages 7-14), Child employment in services, female (% of female economically active children ages 7-14), Children (ages 0-14) newly infected with HIV, Children in employment, study and work (% of children in employment, ages 7-14), Children in employment, unpaid family workers (% of children in employment, ages 7-14), Children in employment, wage workers (% of children in employment, ages 7-14), Children out of school, primary, Children out of school, primary, male, Claims on other sectors of the domestic economy (annual growth as % of broad money), CO2 emissions (kg per 2015 US$ of GDP), CO2 emissions (kt), CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion), CO2 emissions from transport (% of total fuel combustion), Communications, computer, etc. (% of service exports, BoP), Condom use, population ages 15-24, female (% of females ages 15-24), Container port traffic (TEU: 20 foot equivalent units), Contraceptive prevalence, any method (% of married women ages 15-49), Control of Corruption: Estimate, Control of Corruption: Percentile Rank, Upper Bound of 90% Confidence Interval, Control of Corruption: Standard Error, Coverage of social insurance programs in 4th quintile (% of population), CPIA building human resources rating (1=low to 6=high), CPIA debt policy rating (1=low to 6=high), CPIA policies for social inclusion/equity cluster average (1=low to 6=high), CPIA public sector management and institutions cluster average (1=low to 6=high), CPIA quality of budgetary and financial management rating (1=low to 6=high), CPIA transparency, accountability, and corruption in the public sector rating (1=low to 6=high), Current education expenditure, secondary (% of total expenditure in secondary public institutions), DEC alternative conversion factor (LCU per US$), Deposit interest rate (%), Depth of credit information index (0=low to 8=high), Diarrhea treatment (% of children under 5 who received ORS packet), Discrepancy in expenditure estimate of GDP (current LCU), Domestic private health expenditure per capita, PPP (current international $), Droughts, floods, extreme temperatures (% of population, average 1990-2009), Educational attainment, at least Bachelor's or equivalent, population 25+, female (%) (cumulative), Educational attainment, at least Bachelor's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least completed lower secondary, population 25+, female (%) (cumulative), Educational attainment, at least completed primary, population 25+ years, total (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, total (%) (cumulative), Electricity production from coal sources (% of total), Electricity production from nuclear sources (% of total), Employers, total (% of total employment) (modeled ILO estimate), Employment in industry (% of total employment) (modeled ILO estimate), Employment in services, female (% of female employment) (modeled ILO estimate), Employment to population ratio, 15+, male (%) (modeled ILO estimate), Employment to population ratio, ages 15-24, total (%) (national estimate), Energy use (kg of oil equivalent per capita), Export unit value index (2015 = 100), Exports of goods and services (% of GDP), Exports of goods, services and primary income (BoP, current US$), External debt stocks (% of GNI), External health expenditure (% of current health expenditure), Female primary school age children out-of-school (%), Female share of employment in senior and middle management (%), Final consumption expenditure (constant 2015 US$), Firms expected to give gifts in meetings with tax officials (% of firms), Firms experiencing losses due to theft and vandalism (% of firms), Firms formally registered when operations started (% of firms), Fixed broadband subscriptions, Fixed telephone subscriptions (per 100 people), Foreign direct investment, net outflows (% of GDP), Forest area (% of land area), Forest area (sq. km), Forest rents (% of GDP), GDP growth (annual %), GDP per capita (constant LCU), GDP per unit of energy use (PPP $ per kg of oil equivalent), GDP, PPP (constant 2017 international $), General government final consumption expenditure (current LCU), GHG net emissions/removals by LUCF (Mt of CO2 equivalent), GNI growth (annual %), GNI per capita (constant LCU), GNI, PPP (current international $), Goods and services expense (current LCU), Government Effectiveness: Percentile Rank, Government Effectiveness: Percentile Rank, Lower Bound of 90% Confidence Interval, Government Effectiveness: Standard Error, Gross capital formation (annual % growth), Gross capital formation (constant 2015 US$), Gross capital formation (current LCU), Gross fixed capital formation, private sector (% of GDP), Gross intake ratio in first grade of primary education, male (% of relevant age group), Gross intake ratio in first grade of primary education, total (% of relevant age group), Gross national expenditure (current LCU), Gross national expenditure (current US$), Households and NPISHs Final consumption expenditure (constant LCU), Households and NPISHs Final consumption expenditure (current US$), Households and NPISHs Final consumption expenditure, PPP (constant 2017 international $), Households and NPISHs final consumption expenditure: linked series (current LCU), Human capital index (HCI) (scale 0-1), Human capital index (HCI), male (scale 0-1), Immunization, DPT (% of children ages 12-23 months), Import value index (2015 = 100), Imports of goods and services (% of GDP), Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24), Incidence of HIV, all (per 1,000 uninfected population), Income share held by highest 20%, Income share held by lowest 20%, Income share held by third 20%, Individuals using the Internet (% of population), Industry (including construction), value added (constant LCU), Informal payments to public officials (% of firms), Intentional homicides, male (per 100,000 male), Interest payments (% of expense), Interest rate spread (lending rate minus deposit rate, %), Internally displaced persons, new displacement associated with conflict and violence (number of cases), International tourism, expenditures for passenger transport items (current US$), International tourism, expenditures for travel items (current US$), Investment in energy with private participation (current US$), Labor force participation rate for ages 15-24, female (%) (modeled ILO estimate), Development
Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, India Follow data.kapsarc.org for timely data to advance energy economics research..
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Owing to its high copy number and its small size, mtDNA analysis is the most reliable choice when biological materials from crime scenes are degraded or have mixed STR profiles. To examine the occurrence of heteroplasmy along with its frequency and pattern in both HV1 and HV2 regions of the mtDNA among unrelated individuals from India. Mitochondrial DNA control region [hypervariable region one (HV1) and hypervariable region two (HV2)] were analysed in blood and buccal tissues of 104 unrelated individuals from the Indian state of Gujarat. A high frequency of point heteroplasmy (PH) and length heteroplasmy (LH) was revealed. PH was detected in 7.69% of the population, with a higher frequency observed in blood than in buccal samples. However, there were no statistically significant differences in PH between the two tissues (Chi-square = 0.552, p ≥ 0.05). A total of six PH positions were detected: three at HV1, and another three at HV2. The studied population showed 46.15% LH in the HV1 and HV2 regions of both tissues. The LH positions observed in the Gujarat population were the same as those previously reported at HV1 np16184–16193 and HV2 np303–315. Our findings suggest that differences in the pattern of heteroplasmy found in different tissues can complicate the forensic analysis, on the other hand, the probability of a match between the questioned and reference samples increases when the heteroplasmy is identical in both tissues. Variability of PH among persons and even within tissues recommends analysing multiple tissue samples before drawing a conclusion in forensic mtDNA analyses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Life in contemporary cities is often dangerous for stray cats, with strikingly low survival rates. In several countries, trap-neuter-return (TNR) programs have been employed to control urban stray cat populations. Management of stray cats in urban environments is not just about applying scientific solutions, but also identifying approaches that align with local cultural and ethical values. India has an estimated 9.1 million stray cats. TNR presents as a potential method for stray cat management in India, while also improving their welfare. Yet, to date, there has been no academic exploration on Indian residents’ attitudes towards stray cats. We conducted a survey in 13 cities in India reaching 763 residents, examining interactions with stray cats, negative and positive attitudes towards them, attitudes towards managing their population, and awareness of TNR. Results show a high rate of stray cat sightings and interactions. While most respondents believed that stray cats had a right to welfare, the majority held negative attitudes towards and had negative interactions with them. There was widespread lack of awareness about TNR, but, when described, there was a high degree of support. Gathering insights into opinions about stray cats, and the sociodemographic factors that impact these opinions, is an important first step to developing policies and initiatives to manage stray cat populations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Striped snakehead (Channa striata) is a freshwater species of early Miocene period belonging to family Channidae. The genetic variability of the snakehead populations in India was not well known. Present study was undertaken using 149 sequences of control region of mitochondrial DNA from seven geographically distinct populations of Indian water, which resulted in 46 haplotypes with 137 variable nucleotide sites (60 singletons and 77 parsimony informative) and the nucleotide frequencies was: A = 33.0, T = 28.1, G = 15.4, and C = 23.5%. The presence of low-frequency of younger haplotypes with a large number of singletons indicates the absence of dominant haplotype. Hierarchical AMOVA showed highly significant genetic differentiation (FST = 0.56, p
An effective policy response to the economic impacts of the COVID-19 pandemic requires an enormous range of data to inform the design and response of programs. Public health measures require data on the spread of the disease, beliefs in the population, and capacity of the health system. Relief efforts depend on an understanding of hardships being faced by various segments of the population. Food policy requires measurement of agricultural production and hunger. In such a rapidly evolving pandemic, these data must be collected at a high frequency. Given the unexpected nature of the shock and urgency with which a response was required, Indian policymakers needed to formulate policies affecting India’s 1.4 billion people, without the detailed evidence required to construct effective programs. To help overcome this evidence gap, the World Bank, IDinsight, and the Development Data Lab sought to produce rigorous and responsive data for policymakers across six states in India: Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh.
Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, and Uttar Pradesh
Household
Sample survey data [ssd]
This dataset includes observations covering six states (Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, Uttar Pradesh) and three survey rounds. The survey did not have a single, unified frame from which to sample phone numbers. The final sample was assembled from several different sample frames, and the choice of frame sample frames varied across states and survey rounds.
These frames comprise four prior IDinsight projects and from an impact evaluation of the National Rural Livelihoods project conducted by the Ministry of Rural Development. Each of these surveys sought to represent distinct populations, and employed idiosyncratic sample designs and weighting schemes.
A detailed note covering key features of each sample frame is available for download.
Computer Assisted Telephone Interview [cati]
The survey questionnaires covered the following subjects:
Agriculture: COVID-19-related changes in price realisation, acreage decisions, input expenditure, access to credit, access to fertilisers, etc.
Income and consumption: Changes in wage rates, employment duration, consumption expenditure, prices of essential commodities, status of food security etc.
Migration: Rates of in-migration, migrant income and employment status, return migration plans etc.
Access to relief: Access to in-kind, cash and workfare relief, quantities of relief received, and constraints on the access to relief.
Health: Access to health facilities and rates of foregone healthcare, knowledge of COVID-19 related symptoms and protective behaviours.
While a number of indicators were consistent across all three rounds, questions were added and removed as and when necessary to account for seasonal changes (i.e: in the agricultural cycle).
Round 1: ~55% Round 2: ~46% Round 3: ~55%
The graph shows the population growth in China from 2000 to 2024. In 2024, the Chinese population decreased by about 0.1 percent or 1.39 million to around 1.408 billion people. Declining population growth in China Due to strict birth control measures by the Chinese government as well as changing family and work situations of the Chinese people, population growth has subsided over the past decades. Although the gradual abolition of the one-child policy from 2014 on led to temporarily higher birth figures, growth rates further decreased in recent years. As of 2024, leading countries in population growth could almost exclusively be found on the African continent and the Arabian Peninsula. Nevertheless, as of mid 2024, Asia ranked first by a wide margin among the continents in terms of absolute population. Future development of Chinese population The Chinese population reached a maximum of 1,412.6 million people in 2021 but decreased by 850,000 in 2022 and another 2.08 million in 2023. Until 2022, China had still ranked the world’s most populous country, but it was overtaken by India in 2023. Apart from the population decrease, a clear growth trend in Chinese cities is visible. By 2024, around 67 percent of Chinese people lived in urban areas, compared to merely 36 percent in 2000.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Differences in additional new bac+ cases and total cases notified (five quarters of PrIP vs five quarter of IP) by the evaluation population (evaluation population) and control population (control population) and the difference-in-difference estimates.
An effective policy response to the economic impacts of the COVID-19 pandemic requires an enormous range of data to inform the design and response of programs. Public health measures require data on the spread of the disease, beliefs in the population, and capacity of the health system. Relief efforts depend on an understanding of hardships being faced by various segments of the population. Food policy requires measurement of agricultural production and hunger. In such a rapidly evolving pandemic, these data must be collected at a high frequency. Given the unexpected nature of the shock and urgency with which a response was required, Indian policymakers needed to formulate policies affecting India's 1.4 billion people, without the detailed evidence required to construct effective programs. To help overcome this evidence gap, the World Bank, IDinsight, and the Development Data Lab sought to produce rigorous and responsive data for policymakers across six states in India: Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh.
Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh
Household
Sample survey data [ssd]
The samples for these surveys were drawn from surveys and impact evaluations previously conducted by the World Bank, the Ministry of Rural Development, India and IDInsight. A detailed note on the sampling frames is available for download.
Details will be made available after all rounds of data collection and analysis is complete.
Computer Assisted Telephone Interview [cati]
The survey questionnaire consists of the following modules: - Module 0: Introduction - Module 1: Migration - Module 2: Labor and Income - Module 3: Consumption - Module 4: Agriculture - Module 5: Access to Relief - Module 6: Health
~55%
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic characteristics of respondents in Panchkula, India, 2016.
According to latest figures, the Chinese population decreased by 1.39 million to around 1.408 billion people in 2024. After decades of rapid growth, China arrived at the turning point of its demographic development in 2022, which was earlier than expected. The annual population decrease is estimated to remain at moderate levels until around 2030 but to accelerate thereafter. Population development in China China had for a long time been the country with the largest population worldwide, but according to UN estimates, it has been overtaken by India in 2023. As the population in India is still growing, the country is very likely to remain being home of the largest population on earth in the near future. Due to several mechanisms put into place by the Chinese government as well as changing circumstances in the working and social environment of the Chinese people, population growth has subsided over the past decades, displaying an annual population growth rate of -0.1 percent in 2024. Nevertheless, compared to the world population in total, China held a share of about 17 percent of the overall global population in 2024. China's aging population In terms of demographic developments, the birth control efforts of the Chinese government had considerable effects on the demographic pyramid in China. Upon closer examination of the age distribution, a clear trend of an aging population becomes visible. In order to curb the negative effects of an aging population, the Chinese government abolished the one-child policy in 2015, which had been in effect since 1979, and introduced a three-child policy in May 2021. However, many Chinese parents nowadays are reluctant to have a second or third child, as is the case in most of the developed countries in the world. The number of births in China varied in the years following the abolishment of the one-child policy, but did not increase considerably. Among the reasons most prominent for parents not having more children are the rising living costs and costs for child care, growing work pressure, a growing trend towards self-realization and individualism, and changing social behaviors.
The second National Family Health Survey (NFHS-2), conducted in 1998-99, provides information on fertility, mortality, family planning, and important aspects of nutrition, health, and health care. The International Institute for Population Sciences (IIPS) coordinated the survey, which collected information from a nationally representative sample of more than 90,000 ever-married women age 15-49. The NFHS-2 sample covers 99 percent of India's population living in all 26 states. This report is based on the survey data for 25 of the 26 states, however, since data collection in Tripura was delayed due to local problems in the state.
IIPS also coordinated the first National Family Health Survey (NFHS-1) in 1992-93. Most of the types of information collected in NFHS-2 were also collected in the earlier survey, making it possible to identify trends over the intervening period of six and one-half years. In addition, the NFHS-2 questionnaire covered a number of new or expanded topics with important policy implications, such as reproductive health, women's autonomy, domestic violence, women's nutrition, anaemia, and salt iodization.
The NFHS-2 survey was carried out in two phases. Ten states were surveyed in the first phase which began in November 1998 and the remaining states (except Tripura) were surveyed in the second phase which began in March 1999. The field staff collected information from 91,196 households in these 25 states and interviewed 89,199 eligible women in these households. In addition, the survey collected information on 32,393 children born in the three years preceding the survey. One health investigator on each survey team measured the height and weight of eligible women and children and took blood samples to assess the prevalence of anaemia.
SUMMARY OF FINDINGS
POPULATION CHARACTERISTICS
Three-quarters (73 percent) of the population lives in rural areas. The age distribution is typical of populations that have recently experienced a fertility decline, with relatively low proportions in the younger and older age groups. Thirty-six percent of the population is below age 15, and 5 percent is age 65 and above. The sex ratio is 957 females for every 1,000 males in rural areas but only 928 females for every 1,000 males in urban areas, suggesting that more men than women have migrated to urban areas.
The survey provides a variety of demographic and socioeconomic background information. In the country as a whole, 82 percent of household heads are Hindu, 12 percent are Muslim, 3 percent are Christian, and 2 percent are Sikh. Muslims live disproportionately in urban areas, where they comprise 15 percent of household heads. Nineteen percent of household heads belong to scheduled castes, 9 percent belong to scheduled tribes, and 32 percent belong to other backward classes (OBCs). Two-fifths of household heads do not belong to any of these groups.
Questions about housing conditions and the standard of living of households indicate some improvements since the time of NFHS-1. Sixty percent of households in India now have electricity and 39 percent have piped drinking water compared with 51 percent and 33 percent, respectively, at the time of NFHS-1. Sixty-four percent of households have no toilet facility compared with 70 percent at the time of NFHS-1.
About three-fourths (75 percent) of males and half (51 percent) of females age six and above are literate, an increase of 6-8 percentage points from literacy rates at the time of NFHS-1. The percentage of illiterate males varies from 6-7 percent in Mizoram and Kerala to 37 percent in Bihar and the percentage of illiterate females varies from 11 percent in Mizoram and 15 percent in Kerala to 65 percent in Bihar. Seventy-nine percent of children age 6-14 are attending school, up from 68 percent in NFHS-1. The proportion of children attending school has increased for all ages, particularly for girls, but girls continue to lag behind boys in school attendance. Moreover, the disparity in school attendance by sex grows with increasing age of children. At age 6-10, 85 percent of boys attend school compared with 78 percent of girls. By age 15-17, 58 percent of boys attend school compared with 40 percent of girls. The percentage of girls 6-17 attending school varies from 51 percent in Bihar and 56 percent in Rajasthan to over 90 percent in Himachal Pradesh and Kerala.
Women in India tend to marry at an early age. Thirty-four percent of women age 15-19 are already married including 4 percent who are married but gauna has yet to be performed. These proportions are even higher in the rural areas. Older women are more likely than younger women to have married at an early age: 39 percent of women currently age 45-49 married before age 15 compared with 14 percent of women currently age 15-19. Although this indicates that the proportion of women who marry young is declining rapidly, half the women even in the age group 20-24 have married before reaching the legal minimum age of 18 years. On average, women are five years younger than the men they marry. The median age at marriage varies from about 15 years in Madhya Pradesh, Bihar, Uttar Pradesh, Rajasthan, and Andhra Pradesh to 23 years in Goa.
As part of an increasing emphasis on gender issues, NFHS-2 asked women about their participation in household decisionmaking. In India, 91 percent of women are involved in decision-making on at least one of four selected topics. A much lower proportion (52 percent), however, are involved in making decisions about their own health care. There are large variations among states in India with regard to women's involvement in household decisionmaking. More than three out of four women are involved in decisions about their own health care in Himachal Pradesh, Meghalaya, and Punjab compared with about two out of five or less in Madhya Pradesh, Orissa, and Rajasthan. Thirty-nine percent of women do work other than housework, and more than two-thirds of these women work for cash. Only 41 percent of women who earn cash can decide independently how to spend the money that they earn. Forty-three percent of working women report that their earnings constitute at least half of total family earnings, including 18 percent who report that the family is entirely dependent on their earnings. Women's work-participation rates vary from 9 percent in Punjab and 13 percent in Haryana to 60-70 percent in Manipur, Nagaland, and Arunachal Pradesh.
FERTILITY AND FAMILY PLANNING
Fertility continues to decline in India. At current fertility levels, women will have an average of 2.9 children each throughout their childbearing years. The total fertility rate (TFR) is down from 3.4 children per woman at the time of NFHS-1, but is still well above the replacement level of just over two children per woman. There are large variations in fertility among the states in India. Goa and Kerala have attained below replacement level fertility and Karnataka, Himachal Pradesh, Tamil Nadu, and Punjab are at or close to replacement level fertility. By contrast, fertility is 3.3 or more children per woman in Meghalaya, Uttar Pradesh, Rajasthan, Nagaland, Bihar, and Madhya Pradesh. More than one-third to less than half of all births in these latter states are fourth or higher-order births compared with 7-9 percent of births in Kerala, Goa, and Tamil Nadu.
Efforts to encourage the trend towards lower fertility might usefully focus on groups within the population that have higher fertility than average. In India, rural women and women from scheduled tribes and scheduled castes have somewhat higher fertility than other women, but fertility is particularly high for illiterate women, poor women, and Muslim women. Another striking feature is the high level of childbearing among young women. More than half of women age 20-49 had their first birth before reaching age 20, and women age 15-19 account for almost one-fifth of total fertility. Studies in India and elsewhere have shown that health and mortality risks increase when women give birth at such young ages?both for the women themselves and for their children. Family planning programmes focusing on women in this age group could make a significant impact on maternal and child health and help to reduce fertility.
INFANT AND CHILD MORTALITY
NFHS-2 provides estimates of infant and child mortality and examines factors associated with the survival of young children. During the five years preceding the survey, the infant mortality rate was 68 deaths at age 0-11 months per 1,000 live births, substantially lower than 79 per 1,000 in the five years preceding the NFHS-1 survey. The child mortality rate, 29 deaths at age 1-4 years per 1,000 children reaching age one, also declined from the corresponding rate of 33 per 1,000 in NFHS-1. Ninety-five children out of 1,000 born do not live to age five years. Expressed differently, 1 in 15 children die in the first year of life, and 1 in 11 die before reaching age five. Child-survival programmes might usefully focus on specific groups of children with particularly high infant and child mortality rates, such as children who live in rural areas, children whose mothers are illiterate, children belonging to scheduled castes or scheduled tribes, and children from poor households. Infant mortality rates are more than two and one-half times as high for women who did not receive any of the recommended types of maternity related medical care than for mothers who did receive all recommended types of care.
HEALTH, HEALTH CARE, AND NUTRITION
Promotion of maternal and child health has been one of the most important components of the Family Welfare Programme of the Government of India. One goal is for each pregnant woman to receive at least three antenatal check-ups plus two tetanus toxoid injections and a full course of iron and folic acid supplementation. In India, mothers of 65 percent of the children
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A cost-effective estimation of the number of free-roaming dogs is an essential prerequisite for the control of rabies in countries where the disease is endemic, as vaccination of at least 70% of the population is recommended to effectively control the disease. Although estimating the population size through sight-resight based maximum likelihood methodology generates an estimate closest to the actual size, it requires at least five survey efforts to achieve this. In a rural setting in India, a reliable estimate of at least 70% of the likely true population of free-roaming dogs was obtained with the Application SuperDuplicates shinyapp online tool using a photographic sight-resight technique through just two surveys. We tested the wider applicability of this method by validating its use in urban settings in India. Sight-resight surveys of free-roaming dogs were conducted in 15 sectors of the Panchkula Municipal Corporation in north India during September- October 2016. A total of 1,408 unique dogs were identified through 3,465 sightings on 14 survey tracks. The estimates obtained by the Application SuperDuplicates shinyapp online tool after two surveys were compared with the maximum likelihood estimates and it was found that the former, after two surveys, provided an estimate that was at least 70% of that obtained by the latter after 5–6 surveys. Thus, the Application SuperDuplicates shinyapp online tool provides an efficient means for estimating the minimum number of free-roaming dogs to vaccinate with a considerably lower effort than the traditional mark-resight based methods. We recommend use of this tool for estimating the vaccination target of free-roaming dogs prior to undertaking mass vaccination efforts against rabies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundWe simulated tobacco control and pharmacological strategies for preventing cardiovascular deaths in India, the country that is expected to experience more cardiovascular deaths than any other over the next decade.Methods and FindingsA microsimulation model was developed to quantify the differential effects of various tobacco control measures and pharmacological therapies on myocardial infarction and stroke deaths stratified by age, gender, and urban/rural status for 2013 to 2022. The model incorporated population-representative data from India on multiple risk factors that affect myocardial infarction and stroke mortality, including hypertension, hyperlipidemia, diabetes, coronary heart disease, and cerebrovascular disease. We also included data from India on cigarette smoking, bidi smoking, chewing tobacco, and secondhand smoke. According to the model's results, smoke-free legislation and tobacco taxation would likely be the most effective strategy among a menu of tobacco control strategies (including, as well, brief cessation advice by health care providers, mass media campaigns, and an advertising ban) for reducing myocardial infarction and stroke deaths over the next decade, while cessation advice would be expected to be the least effective strategy at the population level. In combination, these tobacco control interventions could avert 25% of myocardial infarctions and strokes (95% CI: 17%–34%) if the effects of the interventions are additive. These effects are substantially larger than would be achieved through aspirin, antihypertensive, and statin therapy under most scenarios, because of limited treatment access and adherence; nevertheless, the impacts of tobacco control policies and pharmacological interventions appear to be markedly synergistic, averting up to one-third of deaths from myocardial infarction and stroke among 20- to 79-y-olds over the next 10 y. Pharmacological therapies could also be considerably more potent with further health system improvements.ConclusionsSmoke-free laws and substantially increased tobacco taxation appear to be markedly potent population measures to avert future cardiovascular deaths in India. Despite the rise in co-morbid cardiovascular disease risk factors like hyperlipidemia and hypertension in low- and middle-income countries, tobacco control is likely to remain a highly effective strategy to reduce cardiovascular deaths.Please see later in the article for the Editors' Summary
The 2015-16 National Family Health Survey (NFHS-4), the fourth in the NFHS series, provides information on population, health, and nutrition for India and each state and union territory. For the first time, NFHS-4 provides district-level estimates for many important indicators. All four NFHS surveys have been conducted under the stewardship of the Ministry of Health and Family Welfare (MoHFW), Government of India. MoHFW designated the International Institute for Population Sciences (IIPS), Mumbai, as the nodal agency for the surveys. Funding for NFHS-4 was provided by the United States Agency for International Development (USAID), the United Kingdom Department for International Development (DFID), the Bill and Melinda Gates Foundation (BMGF), UNICEF, UNFPA, the MacArthur Foundation, and the Government of India. Technical assistance for NFHS-4 was provided by ICF, Maryland, USA. Assistance for the HIV component of the survey was provided by the National AIDS Control Organization (NACO) and the National AIDS Research Institute (NARI), Pune.
National coverage
Sample survey data [ssd]
The NFHS-4 sample was designed to provide estimates of all key indicators at the national and state levels, as well as estimates for most key indicators at the district level (for all 640 districts in India, as of the 2011 Census). The total sample size of approximately 572,000 households for India was based on the size needed to produce reliable indicator estimates for each district and for urban and rural areas in districts in which the urban population accounted for 30-70 percent of the total district population. The rural sample was selected through a two-stage sample design with villages as the Primary Sampling Units (PSUs) at the first stage (selected with probability proportional to size), followed by a random selection of 22 households in each PSU at the second stage. In urban areas, there was also a two-stage sample design with Census Enumeration Blocks (CEB) selected at the first stage and a random selection of 22 households in each CEB at the second stage. At the second stage in both urban and rural areas, households were selected after conducting a complete mapping and household listing operation in the selected first-stage units.
The figures of NFHS-4 and that of earlier rounds may not be strictly comparable due to differences in sample size and NFHS-4 will be a benchmark for future surveys. NFHS-4 fieldwork for Bihar was conducted in all 38 districts of the state from 16 March to 8 August 2015 by the Academic Management Studies (AMS) and collected information from 36,772 households, 45,812 women age 15-49 (including 7,464 women interviewed in PSUs in the state module), and 5,872 men age 15-54.
Computer Assisted Personal Interview [capi]
Four questionnaires - household, woman's, man's, and biomarker, were used to collect information in 19 languages using Computer Assisted Personal Interviewing (CAPI).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesUnder the prevailing conditions of imbalanced life table and historic gender discrimination in India, our study examines crossover between life expectancies at ages zero, one and five years for India and quantifies the relative share of infant and under-five mortality towards this crossover.MethodsWe estimate threshold levels of infant and under-five mortality required for crossover using age specific death rates during 1981–2009 for 16 Indian states by sex (comprising of India’s 90% population in 2011). Kitagawa decomposition equations were used to analyse relative share of infant and under-five mortality towards crossover.FindingsIndia experienced crossover between life expectancies at ages zero and five in 2004 for menand in 2009 for women; eleven and nine Indian states have experienced this crossover for men and women, respectively. Men usually experienced crossover four years earlier than the women. Improvements in mortality below ages five have mostly contributed towards this crossover. Life expectancy at age one exceeds that at age zero for both men and women in India except for Kerala (the only state to experience this crossover in 2000 for men and 1999 for women).ConclusionsFor India, using life expectancy at age zero and under-five mortality rate together may be more meaningful to measure overall health of its people until the crossover. Delayed crossover for women, despite higher life expectancy at birth than for men reiterates that Indian women are still disadvantaged and hence use of life expectancies at ages zero, one and five become important for India. Greater programmatic efforts to control leading causes of death during the first month and 1–59 months in high child mortality areas can help India to attain this crossover early.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Impact Evaluation Framework and Results: Odisha Rural Livelihoods Project This is a baseline panel survey of households from rural Odisha collected to evaluate the impact of the TRIPTI Livelihoods project using a quasi-RDD design. The data were also used, after merging it with information on rainfall patterns, to assess the impact of TRIPTI on mitigating the effects of Hurricane Phailin. Collaboration: World Bank Social Observatory in collaboration with the Government of Odisha. EVALUATION DESIGN This evaluation was designed in 2011 after the project areas were chosen, which meant that a “gold standard” impact evaluation with a Randomized Control Trial method was not feasible. The selection rule for project areas however allowed for the next best available tool of Regression Discontinuity Design (See below). Using this design, the difference in difference approach, which measures the change in outcomes between project or “treatment” and comparable non-project or “control” areas over the evaluation time period can be used to evaluate the impact the project. Selection of TRIPTI Blocks - In each TRIPTI district, 4 blocks were to be chosen for project ""treatment"" using a ""backwardness"" selecton rule - All blocks were given a score that gave weightage to block level development indices (Ghadei Committee Index), SHG coverage, total population and SC/ST Populations - Program blocks then ranked in descending order of scores, and the 4 blocks with highest backwardness score wee chosen for the program Selection of Evaluation Blocks - In each district, the non- program or ""control"" block was chosen to the block that had the closest score to the last of the 4 program blocks - A pair of blocks- one program or “treatment” block, and non- program or “control” blocks) were chosen to be part of the evaluation sample in every district Selection of GPs, Villages and Households - Treatment is universal at the level of the block, which implies that at sub-block units, or Gram Panchayats (GPs) receive TRIPTIs interventions. > 4 GPs randomly chosen in each block > 2 vilages randomly chosen in each GP - All targeted households in a TRIPTI GP are eligible TRIPTI interventions > 15 households randonly chosen in each village > Oversampling of SC/ST housholds to proxy for target housholds EVALUATION DATA The data used in this evaluation come from the first (baseline) of two surveys commissioned by TRIPTI with technical assistance from the World Bank. An independent survey firm implemented both surveys. The baseline survey was completed before the initiation of TRIPTI in the evaluation sample area, between September-November 2011; and the follow up survey was implemented over the same month in 2014. This data therefore covers a 3-year period during which TRIPTI was in operation. The data collected focused on four modules. A general household module collected data on household consumption expenditures (following the same format as India’s National Sample Surveys that are used to measure poverty); and detailed information on the livelihoods portfolio and debt profile of households. A woman’s module was also administered to an adult married woman in each household. This module measured different metrics of women’s empowerment; and included questions on decision-making within the household, and on women’s participation in local public action. Two focus group discussions with the village in general, and women in the villages separately were also implemented in order to understand key elements related to local politics and civic action. In addition, a GPLF survey module- that covered 58 project Gram Panchayats - was implemented during the follow up survey. As part of this evaluation, data was to be collected from a sample of 3000 households selected at random from these 160 villages twice: once before the launch of project interventions in these 80 GPs at baseline (2011), and once at the end of the project. Due to some missing data, the baseline survey included in the end a total of 2875 households and the end line survey included a total of 2,874 households. The working sample is the total set of these households with reliable data. In each round of the survey, each household is linked to village-level data from that round. This evaluation report is an output of the Social Observatory Team of the World Bank and the Orissa Rural Livelihoods Project (TRIPTI), and it was financed by the South Asia Food and Nutrition Security Initiative (SAFANSI). There are two parts to this repot- an executive summary, and a technical paper that is authored by Shareen Joshi (Georgetown University), Nethra Palaniswamy (World Bank), and Vijayendra Rao (World Bank). Discussions with the TRIPTI project team led by the Additional Project Director Babita Mohapatra, and the World Bank task team led by Samik Das were critical to the design of this evaluation. Support from Arvind Padhee and DV Swamy who served as Project Directors of TRIPTI; from...
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Data and insights on Wealth Distribution in India - share of wealth, average wealth, HNIs, wealth inequality GINI, and comparison with global peers.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Introduction: Hepatitis C virus (HCV) infection prevalence is believed to be elevated in Punjab, India; however, state-wide prevalence data are not available. An understanding of HCV prevalence, risk factors and genotype distribution can be used to plan control measures in Punjab. Methods: A cross-sectional, state-wide, population-based serosurvey using a multi-stage stratified cluster sampling design was conducted October 2013 to April 2014. Children aged >5 years and adults were eligible to participate. Demographic and risk behavior data were collected, and serologic specimens were obtained and tested for anti-HCV antibody, HCV Ribonucleic acid (RNA) on anti-HCV positive samples, and HCV genotype. Prevalence estimates and adjusted odds ratios for risk factors were calculated from weighted data and stratified by urban/rural residence. Results: 5,543 individuals participated in the study with an overall weighted anti-HCV prevalence of 3.6% (95% Confidence Interval [CI]: 3.0%-4.2%) and chronic infection (HCV Ribonucleic acid test positive) of 2.6% (95% CI: 2.0%-3.1%). Anti-HCV was associated with being male (adjusted odds ratio 1.52; 95% CI: 1.08-2.14), living in a rural area (adjusted odds ratio 2.53; 95% CI: 1.62-3.95) and was most strongly associated with those aged 40-49 (adjusted odds ratio 40-49 vs 19-29-year-olds 3.41; 95% CI: 1.90-6.11). Anti-HCV prevalence increased with each blood transfusion received (adjusted odds ratio 1.36; 95% CI: 1.10-1.68) and decreased with increasing education, (adjusted odds ratio 0.37 for graduate-level vs. primary school/no education; 95% CI: 0.16-0.82). Genotype 3 (58%) was most common among infected individuals. Discussion: The study findings, including the overall prevalence of chronic HCV infection, associated risk factors and demographic characteristics, and genotype distribution can guide prevention and control efforts, including treatment provision. In addition to high-risk populations, efforts targeting rural areas and adults aged >40 would be the most effective for identifying infected individuals.
The statistic shows the total population of India from 2019 to 2029. In 2023, the estimated total population in India amounted to approximately 1.43 billion people.
Total population in India
India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population.
With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year.
As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.