https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/D-627https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/D-627
"This study deals primarily with the individual's preferences and opinions on population growth and family planning. Questions asked can be broken down into three categories: 1) family planning, including the ideal number of children, adoption of children, birth control information, abortion and sterilization; 2) social problems that stem from population size such as growth of cities and pollution problems; and 3) perception of population size in U.S. and other countries, including satisfacti on with present community and its size, and the part the government should play in population control."
This data package includes the underlying data to replicate the charts and calculations presented in As US population growth slows, we need to reset expectations for economic data, PIIE Policy Brief 25-5.
If you use the data, please cite as:
Kolko, Jed. 2025. As US population growth slows, we need to reset expectations for economic data. PIIE Policy Brief 25-5. Washington: Peterson Institute for International Economics.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Population Health Management Market Size 2025-2029
The population health management market size is valued to increase USD 19.40 billion, at a CAGR of 10.7% from 2024 to 2029. Rising adoption of healthcare IT will drive the population health management market.
Major Market Trends & Insights
North America dominated the market and accounted for a 68% growth during the forecast period.
By Component - Software segment was valued at USD 16.04 billion in 2023
By End-user - Large enterprises segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 113.32 billion
Market Future Opportunities: USD 19.40 billion
CAGR : 10.7%
North America: Largest market in 2023
Market Summary
The market encompasses a continually evolving landscape of core technologies and applications, service types, and regulatory frameworks. With the rising adoption of healthcare IT solutions, population health management platforms are increasingly being adopted to improve patient outcomes and reduce costs. According to a recent study, The market is expected to witness a significant growth, with over 30% of healthcare organizations implementing these solutions by 2025. The focus on personalized medicine and the need to manage the rising cost of healthcare are major drivers for this trend. Core technologies such as data analytics, machine learning, and telehealth are transforming the way healthcare providers manage patient populations.
Despite these opportunities, challenges such as data privacy concerns, interoperability issues, and the high cost of implementation persist. The market is further shaped by regional differences in regulatory frameworks and healthcare infrastructure. For instance, in North America, the Affordable Care Act has fueled the adoption of population health management solutions, while in Europe, the European Medicines Agency's focus on personalized medicine is driving demand.
What will be the Size of the Population Health Management Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Population Health Management Market Segmented and what are the key trends of market segmentation?
The population health management industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Software
Services
End-user
Large enterprises
SMEs
Delivery Mode
On-Premise
Cloud-Based
Web-Based
On-Premise
Cloud-Based
End-Use
Providers
Payers
Employer Groups
Government Bodies
Providers
Payers
Employer Groups
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The market is experiencing significant growth, with the software segment playing a crucial role in this expansion. Currently, remote patient monitoring solutions are witnessing a 25% adoption rate, enabling healthcare providers to monitor patients' health in real-time and intervene promptly when necessary. Additionally, predictive modeling and risk stratification models are being utilized to identify high-risk patients and provide personalized care plans, contributing to a 21% increase in disease management efficiency. Furthermore, the integration of electronic health records, wellness programs, care coordination platforms, and value-based care models is fostering a data-driven approach to healthcare, leading to a 19% reduction in healthcare costs.
Health equity initiatives and healthcare data analytics are essential components of population health management, ensuring equitable access to care and improving healthcare quality metrics. Looking ahead, the market is expected to grow further, with utilization management and care management programs seeing a 27% increase in implementation. Preventive health programs and clinical decision support systems are also anticipated to experience a 24% surge in adoption, emphasizing the importance of proactive care and early intervention. Moreover, population health strategies are evolving to incorporate behavioral health integration, interoperability standards, and disease registry data to provide comprehensive care. The use of disease prevalence data and public health surveillance is becoming increasingly crucial in addressing population health challenges and improving overall health outcomes.
Request Free Sample
The Software segment was valued at USD 16.04 billion in 2019 and showed a gradual increase during the forecast period.
In conclusion, the market is
2010-2018. US Census Annual Estimates of the Resident Population for Selected Age Groups by Sex for the United States. The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. Median age is calculated based on single year of age. For population estimates methodology statements, see http://www.census.gov/popest/methodology/index.html.
https://catalog.dvrpc.org/dvrpc_data_license.htmlhttps://catalog.dvrpc.org/dvrpc_data_license.html
The U.S. Census Bureau releases annual estimates of population by counties and municipalities as part of the Population Estimates Program (PEP). This is an estimate of population on July 1 of each year. Adjustments to previous estimate years are made with each release, dating back to the year of the last decennial census. Decennial figures for April 1 of the most recent decennial year will not get updated, but the July 1 estimate for that same year can adjust with each PEP release. The U.S. Census Bureau produces these estimates based on administrative records. At the municipal level, the PEP reports only population totals. At the county level, PEP data gives estimates for age, sex, race, and ethnicity. PEP releases come out in the spring following the latest estimate year. The demographic estimates of the PEP are used as control totals for the American Community Survey results released later that year.
https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
US Population Health Management (PHM) Market Size 2025-2029
The us population health management (phm) market size is forecast to increase by USD 6.04 billion at a CAGR of 7.4% between 2024 and 2029.
The Population Health Management (PHM) market in the US is experiencing significant growth, driven by the increasing adoption of healthcare IT solutions and analytics. These technologies enable healthcare providers to collect, analyze, and act on patient data to improve health outcomes and reduce costs. However, the high perceived costs associated with PHM solutions pose a challenge for some organizations, limiting their ability to fully implement and optimize these technologies. Despite this obstacle, the potential benefits of PHM, including improved patient care and population health, make it a strategic priority for many healthcare organizations. To capitalize on this opportunity, companies must focus on cost-effective solutions and innovative approaches to addressing the challenges of PHM implementation and optimization. By leveraging advanced analytics, cloud technologies, and strategic partnerships, organizations can overcome cost barriers and deliver better care to their patient populations.
What will be the size of the US Population Health Management (PHM) Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The Population Health Management (PHM) market in the US is experiencing significant advancements, integrating various elements to improve patient outcomes and reduce healthcare costs. Public health surveillance and data governance ensure accurate population health data, enabling healthcare leaders to identify health disparities and target interventions. Quality measures and health literacy initiatives promote transparency and patient activation, while data visualization and business intelligence facilitate data-driven decision-making. Behavioral health integration, substance abuse treatment, and mental health services address the growing need for holistic care, and outcome-based contracts incentivize providers to focus on patient outcomes. Health communication, community health workers, and patient portals enhance patient engagement, while wearable devices and mHealth technologies provide real-time data for personalized care plans. Precision medicine and predictive modeling leverage advanced analytics to tailor treatment approaches, and social service integration addresses the social determinants of health. Health data management, data storytelling, and healthcare innovation continue to drive market growth, transforming the industry and improving overall population health.
How is this market segmented?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareServicesDeploymentCloudOn-premisesEnd-userHealthcare providersHealthcare payersEmployers and government bodiesGeographyNorth AmericaUS
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.
Population Health Management (PHM) software in the US gathers patient data from healthcare systems and utilizes advanced analytics tools, including data visualization and business intelligence, to predict health conditions and improve patient care. PHM software aims to enhance healthcare efficiency, reduce costs, and ensure quality patient care. By analyzing accurate patient data, PHM software enables the identification of community health risks, leading to proactive interventions and better health outcomes. The adoption of PHM software is on the rise in the US due to the growing emphasis on value-based care and the increasing prevalence of chronic diseases. Machine learning, artificial intelligence, and predictive analytics are integral components of PHM software, enabling healthcare payers to develop personalized care plans and improve care coordination. Data integration and interoperability facilitate seamless data sharing among various healthcare stakeholders, while data visualization tools help in making informed decisions. Public health agencies and healthcare providers leverage PHM software for population health research, disease management programs, and quality improvement initiatives. Cloud computing and data warehousing provide the necessary infrastructure for storing and managing large volumes of population health data. Healthcare regulations mandate the adoption of PHM software to ensure compliance with data privacy and security standards. PHM software also supports care management services, patient engagement platforms, and remote patient monitoring, empowering patients
https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy
United States population health management market size reached USD 21.5 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 102.0 Billion by 2033, exhibiting a growth rate (CAGR) of 18.9% during 2025-2033. The increasing advances in healthcare information technology, including electronic health records (EHRs), data analytics, and interoperability, which have enhanced the capabilities of population health management solutions, are driving the market.
The Population online databases contain data from the US Census Bureau. The Census Estimates online database contains county-level population counts for years 1970 - 2000. The data comprise the April 1st Census counts for years 1970, 1980, 1990 and 2000, the July 1st intercensal estimates for years 1971-1979 and 1981-1989, and the July 1st postcensal estimates for years 1991-1999. The Census Projections online database contains population projections for years 2004-2030 by year, state, age, race and sex, produced by the Census Bureau in 2005. The data are produced by the United States Department of Commerce, U.S. Census Bureau, Population Division.
The 2005 Vietnam Population and AIDS Indicator Survey (VPAIS) was designed with the objective of obtaining national and sub-national information about program indicators of knowledge, attitudes and sexual behavior related to HIV/AIDS. Data collection took place from 17 September 2005 until mid-December 2005.
The VPAIS was implemented by the General Statistical Office (GSO) in collaboration with the National Institute of Hygiene and Epidemiology (NIHE). ORC Macro provided financial and technical assistance for the survey through the USAID-funded MEASURE DHS program. Financial support was provided by the Government of Vietnam, the United States President’s Emergency Plan for AIDS Relief, the United States Agency for International Development (USAID), and the United States Centers for Disease Control and Prevention/Global AIDS Program (CDC/GAP).
The survey obtained information on sexual behavior, and knowledge, attitudes, and behavior regarding HIV/AIDS. In addition, in Hai Phong province, the survey also collected blood samples from survey respondents in order to estimate the prevalence of HIV. The overall goal of the survey was to provide program managers and policymakers involved in HIV/AIDS programs with strategic information needed to effectively plan, implement and evaluate future interventions.
The information is also intended to assist policymakers and program implementers to monitor and evaluate existing programs and to design new strategies for combating the HIV/AIDS epidemic in Vietnam. The survey data will also be used to calculate indicators developed by the United Nations General Assembly Special Session on HIV/AIDS (UNGASS), UNAIDS, WHO, USAID, the United States President’s Emergency Plan for AIDS Relief, and the HIV/AIDS National Response.
The specific objectives of the 2005 VPAIS were: • to obtain information on sexual behavior. • to obtain accurate information on behavioral indicators related to HIV/AIDS and other sexually transmitted infections. • to obtain accurate information on HIV/AIDS program indicators. • to obtain accurate estimates of the magnitude and variation in HIV prevalence in Hai Phong Province.
National coverage
Sample survey data [ssd]
The sampling frame for the 2005 Vietnam Population and AIDS Indicator Survey (VPAIS) was the master sample used by the General Statistical Office (GSO) for its annual Population Change Survey (PCS 2005). The master sample itself was constructed in 2004 from the 1999 Population and Housing Census. As was true for the VNDHS 1997 and the VNDHS 2002 the VPAIS 2005 is a nationally representative sample of the entire population of Vietnam.
The survey utilized a two-stage sample design. In the first stage, 251 clusters were selected from the master sample. In the second stage, a fixed number of households were systematically selected within each cluster, 22 households in urban areas and 28 in rural areas.
The total sample of 251 clusters is comprised of 97 urban and 154 rural clusters. HIV/AIDS programs have focused efforts in the four provinces of Hai Phong, Ha Noi, Quang Ninh and Ho Chi Minh City; therefore, it was determined that the sample should be selected to allow for representative estimates of these four provinces in addition to the national estimates. The selected clusters were allocated as follows: 35 clusters in Hai Phong province where blood samples were collected to estimate HIV prevalence; 22 clusters in each of the other three targeted provinces of Ha Noi, Quang Ninh and Ho Chi Minh City; and the remaining 150 clusters from the other 60 provinces throughout the country.
Prior to the VPAIS fieldwork, GSO conducted a listing operation in each of the selected clusters. All households residing in the sample points were systematically listed by teams of enumerators, using listing forms specially designed for this activity, and also drew sketch maps of each cluster. A total of 6,446 households were selected. The VPAIS collected data representative of: • the entire country, at the national level • for urban and rural areas • for three regions (North, Central and South), see Appendix for classification of regions. • for four target provinces: Ha Noi, Hai Phong, Quang Ninh and Ho Chi Minh City.
All women and men aged 15-49 years who were either permanent residents of the sampled households or visitors present in the household during the night before the survey were eligible to be interviewed in the survey. All women and men in the sample points of Hai Phong who were interviewed were asked to voluntarily give a blood sample for HIV testing. For youths aged 15-17, blood samples were drawn only after first obtaining consent from their parents or guardians.
(Refer Appendix A of the final survey report for details of sample implementation)
Face-to-face [f2f]
Two questionnaires were used in the survey, the Household Questionnaire and the Individual Questionnaire for women and men aged 15-49. The content of these questionnaires was based on the model AIDS Indicator Survey (AIS) questionnaires developed by the MEASURE DHS program implemented by ORC Macro.
In consultation with government agencies and local and international organizations, the GSO and NIHE modified the model questionnaires to reflect issues in HIV/AIDS relevant to Vietnam. These questionnaires were then translated from English into Vietnamese. The questionnaires were further refined after the pretest.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including age, sex, relationship to the head of the household, education, basic material needs, survivorship and residence of biological parents of children under the age of 18 years and birth registration of children under the age of 5 years. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. The Household Questionnaire also collected information on characteristics of the household’s dwelling unit, such as the source of drinking water, type of toilet facilities, type of material used in the flooring of the house, and ownership of various durable goods, in order to allow for the calculation of a wealth index. The Household Questionnaire also collected information regarding ownership and use of mosquito nets.
The Individual Questionnaire was used to collect information from all women and men aged 15-49 years.
All questionnaires were administered in a face-to-face interview. Because cultural norms in Vietnam restrict open discussion of sexual behavior, there is concern that this technique may contribute to potential under-reporting of sexual activity, especially outside of marriage.
All aspects of VPAIS data collection were pre-tested in July 2005. In total, 24 interviewers (12 men and 12 women) were involved in this task. They were trained for thirteen days (including three days of fieldwork practice) and then proceeded to conduct the survey in the various urban and rural districts of Ha Noi. In total, 240 individual interviews were completed during the pretest. The lessons learnt from the pretest were used to finalize the survey instruments and logistical arrangements for the survey and blood collection.
The data processing of the VPAIS questionnaire began shortly after the fieldwork commenced. The first stage of data editing was done by the field editors, who checked the questionnaires for completeness and consistency. Supervisors also reviewed the questionnaires in the field. The completed questionnaires were then sent periodically to the GSO in Ha Noi by mail for data processing.
The office editing staff first checked that questionnaires of all households and eligible respondents had been received from the field. The data were then entered and edited using CSPro, a software package developed collaboratively between the U.S. Census Bureau, ORC Macro, and SerPRO to process complex surveys. All data were entered twice (100 percent verification). The concurrent processing of the data was a distinct advantage for data quality, as VPAIS staff was able to advise field teams of errors detected during data entry. The data entry and editing phases of the survey were completed by the end of December 2005.
A total of 6,446 households were selected in the sample, of which 6,346 (98 percent) were found to be occupied at the time of the fieldwork. Occupied households include dwellings in which the household was present but no competent respondent was home, the household was present but refused the interview, and dwellings that were not found. Of occupied households, 6,337 were interviewed, yielding a household response rate close to 100 percent.
All women and men aged 15-49 years who were either permanent residents of the sampled households or visitors present in the household during the night before the survey were eligible to be interviewed in the survey. Within interviewed households, a total of 7,369 women aged 15-49 were identified as eligible for interview, of whom 7,289 were interviewed, yielding a response rate to the Individual interview of 99 percent among women. The high response rate was also achieved in male interviews. Among the 6,788 men aged 15-49 identified as eligible for interview, 6,707 were successfully interviewed, yielding a response rate of 99 percent.
Sampling error
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description of parameters.
https://www.kenresearch.com/terms-and-conditionshttps://www.kenresearch.com/terms-and-conditions
The North America Population Health Management Market size is valued at USD 35 billion, driven by market trends, player analysis, and industry challenges. Explore insights on market dynamics and segmentation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Effective management of widespread invasive species such as wild pigs (Sus scrofa) is limited by resources available to devote to the effort. Better insight of the effectiveness of different management strategies on population dynamics is important for guiding decisions of resource allocation over space and time. Using a dynamic population model, we quantified effects of culling intensities and time between culling events on population dynamics of wild pigs in the USA using empirical culling patterns and data-based demographic parameters. In simulated populations closed to immigration, substantial population declines (50–100%) occurred within 4 years when 20–60% of the population was culled annually, but when immigration from surrounding areas occurred, there was a maximum of 50% reduction, even with the maximum culling intensity of 60%. Incorporating hypothetical levels of fertility control with realistic culling intensities was most effective in reducing populations when they were closed to immigration and when intrinsic population growth rate was too high (> = 1.78) to be controlled by culling alone. However, substantial benefits from fertility control used in conjunction with culling may only occur over a narrow range of net population growth rates (i.e., where net is the result of intrinsic growth rates and culling) that varies depending on intrinsic population growth rate. The management implications are that the decision to use fertility control in conjunction with culling should rely on concurrent consideration of achievable culling intensity, underlying demographic parameters, and costs of culling and fertility control. The addition of fertility control reduced abundance substantially more than culling alone, however the effects of fertility control were weaker than in populations without immigration. Because these populations were not being reduced substantially by culling alone, fertility control could be an especially helpful enhancement to culling for reducing abundance to target levels in areas where immigration can’t be prevented.
The 2018 edition of Woods and Poole Complete U.S. Database provides annual historical data from 1970 (some variables begin in 1990) and annual projections to 2050 of population by race, sex, and age, employment by industry, earnings of employees by industry, personal income by source, households by income bracket and retail sales by kind of business. The Complete U.S. Database contains annual data for all economic and demographic variables for all geographic areas in the Woods & Poole database (the U.S. total, and all regions, states, counties, and CBSAs). The Complete U.S. Database has following components: Demographic & Economic Desktop Data Files: There are 122 files covering demographic and economic data. The first 31 files (WP001.csv – WP031.csv) cover demographic data. The remaining files (WP032.csv – WP122.csv) cover economic data. Demographic DDFs: Provide population data for the U.S., regions, states, Combined Statistical Areas (CSAs), Metropolitan Statistical Areas (MSAs), Micropolitan Statistical Areas (MICROs), Metropolitan Divisions (MDIVs), and counties. Each variable is in a separate .csv file. Variables: Total Population Population Age (breakdown: 0-4, 5-9, 10-15 etc. all the way to 85 & over) Median Age of Population White Population Population Native American Population Asian & Pacific Islander Population Hispanic Population, any Race Total Population Age (breakdown: 0-17, 15-17, 18-24, 65 & over) Male Population Female Population Economic DDFs: The other files (WP032.csv – WP122.csv) provide employment and income data on: Total Employment (by industry) Total Earnings of Employees (by industry) Total Personal Income (by source) Household income (by brackets) Total Retail & Food Services Sales ( by industry) Net Earnings Gross Regional Product Retail Sales per Household Economic & Demographic Flat File: A single file for total number of people by single year of age (from 0 to 85 and over), race, and gender. It covers all U.S., regions, states, CSAs, MSAs and counties. Years of coverage: 1990 - 2050 Single Year of Age by Race and Gender: Separate files for number of people by single year of age (from 0 years to 85 years and over), race (White, Black, Native American, Asian American & Pacific Islander and Hispanic) and gender. Years of coverage: 1990 through 2050. DATA AVAILABLE FOR 1970-2019; FORECASTS THROUGH 2050
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
This dataset was created from the CDC's National Vital Statistics Reports Volume 56, Number 6. The dataset includes all data available from this report by state level and includes births by race and Hispanic origin, births to unmarried women, rates of cesarean delivery, and twin and multiple birth rates. The data are final for 2005. No value is represented by a -1. "Descriptive tabulations of data reported on the birth certificates of the 4.1 million births that occurred in 2005 are presented. Denominators for population-based rates are postcensal estimates derived from the U.S. 2000 census".
This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.
The Population - Bridged-Race July 1st Estimates online databases report bridged-race population estimates of the July 1st resident population of the United States, based on Census 2000 counts, for use in calculating vital rates. These estimates result from "bridging" the 31 race categories used in Census 2000, as specified in the 1997 Office of Management and Budget (OMB) standards for the collection of data on race and ethnicity, to the four race categories specified under the 1977 standards (Asian or Pacific Islander, Black or African American, American Indian or Alaska Native, White). Many data systems, such as vital statistics, are continuing to use the 1977 OMB standards during the transition to full implementation of the 1997 OMB standards. Postcensal estimates are available for year 2000 - 2009; intercensal estimates are available for the years 1990-1999. Obtain population counts by Year, State, County, Race (4-categories), Ethnicity, Sex and Age (1-year or 5-year groups). The data are released by the National Center for Health Statistics.
https://meditechinsights.com/privacy-policy/https://meditechinsights.com/privacy-policy/
The U.S. population health management market is expected to grow at a significant CAGR of approximately 20% in the forecast period. This growth is driven by the transition to value-based care models, the increasing burden of chronic diseases, advancements in healthcare analytics, regulatory reforms, and the rising need for cost reduction and improved care outcomes. […]
https://www.imrmarketreports.com/privacy-policy/https://www.imrmarketreports.com/privacy-policy/
The North America Population Health Management market report offers a thorough competitive analysis, mapping key players’ strategies, market share, and business models. It provides insights into competitor dynamics, helping companies align their strategies with the current market landscape and future trends.
This layer is being made accessible on this platform as part of a larger collaborative project under development by Arizona Water Company, University of Arizona Water Resources Research Center, Babbitt Center for Land and Water Policy, and Center for Geospatial Solutions. This visualization for Pinal County expresses 2021 U.S. Census block, tract, and places data and the boundaries of the Active Management Areas and Pinal County within Arizona. All of these shapefiles have been altered for visualization purposes.The main sources of data present in this feature layer were taken from the following locations:U.S. Census Tiger/Line Shapefiles (2021)2021 TIGER/Line® Shapefiles (census.gov)The University of Arizona (2008)https://repository.arizona.edu/handle/10150/188734Arizona Department of Water Resources GIS Data (2021)https://gisdata2016-11-18t150447874z-azwater.opendata.arcgis.com/datasets/azwater::ama-and-ina-1/explore?location=34.158174%2C-111.970823%2C7.24These shapefiles were altered.
https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/D-627https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/D-627
"This study deals primarily with the individual's preferences and opinions on population growth and family planning. Questions asked can be broken down into three categories: 1) family planning, including the ideal number of children, adoption of children, birth control information, abortion and sterilization; 2) social problems that stem from population size such as growth of cities and pollution problems; and 3) perception of population size in U.S. and other countries, including satisfacti on with present community and its size, and the part the government should play in population control."