Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2021 World Population (updated daily)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/rsrishav/world-population on 28 January 2022.
--- Dataset description provided by original source is as follows ---
2021 World Population dataset which gets updated daily.
2021_population.csv
: File contains data for only live 2021 population count which gets updated daily.
Also contains more information about the country's growth rate, area, etc.
timeseries_population_count.csv
: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.
This type of data can be used for population-related use cases.
Like, my own dataset COVID Vaccination in World (updated daily)
, which requires population data.
I believe there are more use cases that I didn't explore yet but might other Kaggler needs this.
Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.
--- Original source retains full ownership of the source dataset ---
As of February 2025, 5.56 billion individuals worldwide were internet users, which amounted to 67.9 percent of the global population. Of this total, 5.24 billion, or 63.9 percent of the world's population, were social media users. Global internet usage Connecting billions of people worldwide, the internet is a core pillar of the modern information society. Northern Europe ranked first among worldwide regions by the share of the population using the internet in 20254. In The Netherlands, Norway and Saudi Arabia, 99 percent of the population used the internet as of February 2025. North Korea was at the opposite end of the spectrum, with virtually no internet usage penetration among the general population, ranking last worldwide. Eastern Asia was home to the largest number of online users worldwide – over 1.34 billion at the latest count. Southern Asia ranked second, with around 1.2 billion internet users. China, India, and the United States rank ahead of other countries worldwide by the number of internet users. Worldwide internet user demographics As of 2024, the share of female internet users worldwide was 65 percent, five percent less than that of men. Gender disparity in internet usage was bigger in African countries, with around a ten percent difference. Worldwide regions, like the Commonwealth of Independent States and Europe, showed a smaller usage gap between these two genders. As of 2024, global internet usage was higher among individuals between 15 and 24 years old across all regions, with young people in Europe representing the most significant usage penetration, 98 percent. In comparison, the worldwide average for the age group 15–24 years was 79 percent. The income level of the countries was also an essential factor for internet access, as 93 percent of the population of the countries with high income reportedly used the internet, as opposed to only 27 percent of the low-income markets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, female (% of total population) in World was reported at 49.71 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on May of 2025.
In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth
https://www.icpsr.umich.edu/web/ICPSR/studies/7616/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7616/terms
This data collection supplies standard monthly labor force data for the week prior to the survey. Comprehensive information is given on the employment status, occupation, and industry of persons 14 years old and older. Additional data are available concerning weeks worked and hours per week worked, reason not working full-time, total income and income components, and residence. This study matches data taken from CURRENT POPULATION SURVEY: ANNUAL DEMOGRAPHIC FILE, 1973 (ICPSR 7564) with Social Security benefit and earnings records. Also included is a limited set of tax items furnished by the Internal Revenue Service from the 1972 Federal Income Tax Returns. Information on demographic characteristics such as, sex, ages, race, marital status, veteran status, educational attainment, household relationship, and Hispanic origin, is available for each person in the household enumerated.
The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the _location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map features a global estimate of human population for 2016 with a focus on the Caribbean region . Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by statistical area 2.
Map shows the percentage change in the census usually resident population count between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Census usually resident population count concept quality rating
The census usually resident population count is rated as very high quality.
Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-998 Not applicable
The statistic shows the total population in the United States from 2015 to 2021, with projections up until 2027. In 2021, the total population of the U.S. amounted to approximately 332.18 million inhabitants.
The United States' economy over the last decade
The United States of America is the world’s largest national economy and the second most prominent trader globally, trailing just behind China. The country is also one of the most populated countries in the world, trailing only China and India. The United States' economy prospers primarily due to having a plentiful amount of natural resources and advanced infrastructure to cope with the production of goods and services, as well as the population and workforce to enable high productivity. Efficient productivity led to a slight growth in GDP almost every year over the past decade, despite undergoing several economic hardships towards the late 2000's.
In addition, the United States holds arguably one of the most important financial markets, with the majority of countries around the world having commercial connections with American companies. Dependency on a single market like the United States has however caused several global dilemmas, most evidently seen during the 2008 financial crisis. What initially started off as a bursting of the U.S. housing bubble lead to a worldwide recession and the necessity to reform national economics. The global financial crisis affected the United States most drastically, especially within the unemployment market as well as national debt, which continued to rise due to the United States having to borrow money in order to stimulate its economy.
http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1ahttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1a
There is a requirement, as per Commission Implementing Regulation (EU) 2018/1799, to deliver Census data for the reference year 2021 to Eurostat. In September 2020, the Irish Government decided to postpone the scheduled April 2021 Census to April 2022 following a recommendation from CSO related to the impact of the Covid-19 pandemic. The CSO however has agreed that the office will still meet its legal requirement. It will base the Eurostat requirements on Census 2022 data, using administrative and other sources to appropriately adjust the data to reference year 2021. A (preliminary) headcount of usual residents at the 1 km2 grid level (there are approximately 73,000 such square kilometres in Ireland) is required by Eurostat by 31st December 2022. The data was produced in the following manner:
Initial preliminary Census estimate for April 2022 As part of the field operation for the 2022 Census, the CSO introduced a new smartphone-based application that allowed field staff to capture information about every dwelling in the country. This application facilitated the production of a preliminary population publication less than 12 weeks (June 23rd) after census night (April 3rd). The information includes data on the number of de facto occupants. This information is provisional, and the final file will not be completed until all collected paper forms are fully processed, which is expected to be around the end of January 2023. The provisional data should however be a very strong indicator of the final results.
The preliminary Census de facto population estimate was 5,123,536 persons, available at the 1 km2 grid level. As we need the population on a usual resident basis, it was decided to adjust this estimated de facto population at the 1 km2 grid level by applying the arithmetic differences between the 2016 usual resident and de facto population counts at that level to the de facto population for 2022. A ratio model, where rates of change of de facto to usual resident counts are applied instead of differences, was also considered but this led to more extreme adjustments, mainly where there was a large change in the population count of a cell between 2016 and 2022. This reduced the usual resident population to 5,101,268 for April 2022, a fall of 22,268 persons.
Temporary Absent Dwellings Census also provided data on the temporarily absent dwellings dataset (at 1 km2 grid level), containing a count of persons usually resident in the State but whose entire household were abroad on census night and therefore not included in the de facto population count. This covers 33,365 temporarily absent dwellings with 50,749 temporarily absent persons across 9,138 grid cells. This category was not present in the 2016 figures so it was decided to include these absent persons as they meet the definition of usual residents and will be present in the final transmission, due March 2024. The resulting usually resident population count for 3rd April 2022 was estimated as 5,152,671 persons.
Note that in a small number cases (80 grid cells), adjustments resulted in a negative cell value, but these were set to zero.
Final preliminary estimate
The CSO then adjusted this figure of estimated usual residents for 3rd April 2022 back to the 3rd December 2021 reference point by performing a reverse cohort-survival model.
Firstly, there are an estimated 21,528 births, some 12,405 deaths and approximately 63,595 inward and 25,730 outward migrants for the four-month period December 2021 to March 2022. This affects a total of approximately 123,000 persons, or about 2.4% in a total population of around 5.15 million persons. These population changes were ‘reversed’, as indicated below. Secondly, we also ‘reversed’ those persons who moved from their address within Ireland after December 3rd 2021 to their Census April 3rd 2022 address. Based on the selection method approximately 85,000 persons were moved to their previous address, representing about 1.7% of the population.
The steps in the process were:
Births We took the actual November 2015 to April 2016 births from Census 2016 with the variables grid reference, gender and NUTS3 as the sampling frame for the selection of births. Then, using data from table 19 in the Q1 2022 Vital Stats quarterly release (Table VSQ19 on Statbank), we derived the number of Q1 2022 births at NUTS3 by gender level. We also included a proportion of Q4 2021 births, taking one-third to represent December 2021. There are 21,528 births in total for the four-month period we are interested in (16,121 for Q1 2022 plus a third of the value of Q4 2021 which is 5,407), see table 2. Then, using the SAS procedure surveyselect, we selected, at random, the required number of births per strata from the frame and totalled up per grid reference. The resulting figure is the number of people removed from the Census 2021 grid totals, as these figures represent those born during December 2021 to March 2022.
We took the entire Census 2016 data with the variables grid reference, gender, NUTS3 and broad age group (0-14, 15-29, 30-49, 50-64, 65-84 and 85+) as the sampling frame for the selection of people to add back in who died between December 2020 and March 2022. This stratification results in 96 cells. This frame serves as a proxy for the distribution of deaths across the 1km grid square strata. Next, we obtained the Q4 2021 and Q1 2022 mortality data stratified by gender, NUTS3 and age group, provided by the Vital Stats statistician. The total number is 12,405 deaths for the four-month period of interest (9,535 for Q1 2022 plus one third of the value for Q4 2021 which is 8,626), see tables 3 and 4.
Then using the SAS procedure surveyselect, we selected, at random, the required number of deaths per strata from the frame and total up per grid reference. The resulting figure is simply the number of people added to the Census 2021 grid figures as summarised at the grid level, as they represent those who died during December 2021 to March 2022.
Inward and outward migrants
The processing of the inward and outward migrants essentially follows the same methodology in that we used Census 2016 as a sampling frame for the inclusion of those who emigrated in December 2021 and March 2022 and the exclusion of those who immigrated in the same period.
We took the Census 2016 with the variables grid reference, gender, NUTS3, broad nationality (Irish, UK, EU14 excl. IE, EU15 to 27 and Rest of the World) and broad age group (0-14, 15-29, 30-49, 50-64, 65-84 and 85+) as the sampling frame for the selection of migrants. Using the Q4 2021 and Q1 2022 migration data, we got the required inward and outward movers. The Population and Migration statistician provided the data at an individual level for our purposes. There are 63,780 inward migrators (53,403 in Q1 2022 and 10,377 taking one-third of the Q4 2021 values) and 25,730 outward migrators (19,779 in Q1 2022 and 5,951 taking one-third of the Q4 2021 values), see tables 5 to 7.
Then, using SAS procedure surveyselect, we selected, at random, the required number of inward and outward migrants per strata from the frame and sum over grid reference. Given that there will be more inward than outward migrants, the resulting figures will generally be negative i.e., the population will fall.
Ukrainian refugees There are no official statistics, but it was estimated that there were more than 23,000 Ukrainian refugees present in the State in April 3 2022. It is difficult to know the exact numbers captured by the Census until the full final dataset is available. Ukrainian refugees were to be counted as immigrants and usual residents (UR) on the census form unless an individual classed themselves as a visitor, in which case they were de facto (DF) residents. From the point of view of the procedure being described here, Ukrainians who are classified
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Total population for the United States in 2024 was <strong>341,814,420</strong>, a <strong>2.06% increase</strong> from 2023.</li>
<li>Total population for the United States in 2023 was <strong>334,914,895</strong>, a <strong>0.49% increase</strong> from 2022.</li>
<li>Total population for the United States in 2022 was <strong>333,271,411</strong>, a <strong>0.37% increase</strong> from 2021.</li>
</ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains ethnic group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the ethnic group population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by territorial authority and Auckland local board.
The ethnic groups are:
Map shows percentage change in the census usually resident population count for ethnic groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Ethnicity concept quality rating
Ethnicity is rated as high quality.
Ethnicity – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-998 Not applicable
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show total population and change by Super District in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
SumLevel
Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)
GEOID
Census tract Federal Information Processing Series (FIPS) code
NAME
Name of geographic unit
Planning_Region
Planning region designation for ARC purposes
Acres
# Area, Acres, 2017
SqMi
# Area, square miles, 2017
County
County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)
CountyName
County Name
TotPop_e
# Total population, 2017
TotPop_m
# Total population, 2017 (MOE)
rPopDensity
Population density (people per square mile), 2017
last_edited_date
Last date the feature was edited by ARC
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains life-cycle age group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the age group population counts between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by territorial authority and Auckland local board.
The life-cycle age groups are:
Map shows the percentage change in the census usually resident population count for life-cycle age groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Age concept quality rating
Age is rated as very high quality.
Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains sex by ethnic group (grouped total responses), for the census usually resident population count, 2006, 2013, and 2018 Censuses for urban rural areas. The dataset uses geographic boundaries as at 1 January 2018. For explanation of the urban rural classification see Statistical standard for geographic areas 2018. Definitions The census usually resident population count (CURP) of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. The CURP variable is rated as high quality. Ethnic group includes all people who stated each ethnic group, whether as their only ethnic group or as one of several ethnic groups. Where a person reported more than one ethnic group, they have been counted in each applicable group. The Ethnicity variable is rated as high quality. Quality For information on quality ratings by variable, please see Data quality ratings for 2018 census variables. Due to changes in the 2018 Census methodology and lower than anticipated response rates, time series data should be interpreted with care. Confidentiality The 2018 Census confidentiality rules have been applied to 2006, 2013, and 2018 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2018 Census data. Counts are calculated using Fixed Random Rounding to base 3 (FRR3), and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. For more information on the most recent 2018 Census confidentiality rules see Applying confidentiality rules to 2018 Census data and summary of changes since 2013
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.
For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e20
Estimate from 2016-20 ACS
_m20
Margin of Error from 2016-20 ACS
_e10
2006-10 ACS, re-estimated to 2020 geography
_m10
Margin of Error from 2006-10 ACS, re-estimated to 2020 geography
_e10_20
Change, 2010-20 (holding constant at 2020 geography)
Geographies
AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)
ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)
Census Tracts (statewide)
CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)
City (statewide)
City of Atlanta Council Districts (City of Atlanta)
City of Atlanta Neighborhood Planning Unit (City of Atlanta)
City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)
City of Atlanta Neighborhood Statistical Areas (City of Atlanta)
County (statewide)
Georgia House (statewide)
Georgia Senate (statewide)
MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)
Regional Commissions (statewide)
State of Georgia (statewide)
Superdistrict (ARC region)
US Congress (statewide)
UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)
WFF = Westside Future Fund (subarea of City of Atlanta)
ZIP Code Tabulation Areas (statewide)
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)
Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2021 World Population (updated daily)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/rsrishav/world-population on 28 January 2022.
--- Dataset description provided by original source is as follows ---
2021 World Population dataset which gets updated daily.
2021_population.csv
: File contains data for only live 2021 population count which gets updated daily.
Also contains more information about the country's growth rate, area, etc.
timeseries_population_count.csv
: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.
This type of data can be used for population-related use cases.
Like, my own dataset COVID Vaccination in World (updated daily)
, which requires population data.
I believe there are more use cases that I didn't explore yet but might other Kaggler needs this.
Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.
--- Original source retains full ownership of the source dataset ---