65 datasets found
  1. A

    ‘B0107 - 2002 Population Density and Area Size’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘B0107 - 2002 Population Density and Area Size’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-europa-eu-b0107-2002-population-density-and-area-size-8139/latest
    Explore at:
    Dataset updated
    Jan 19, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘B0107 - 2002 Population Density and Area Size’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/84fbd513-454a-4789-847d-07c312e7f852 on 19 January 2022.

    --- Dataset description provided by original source is as follows ---

    2002 Population Density and Area Size

    --- Original source retains full ownership of the source dataset ---

  2. Population Density in the US (2020 Census)

    • data-bgky.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Population Density in the US (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/maps/a1926cb43e844c3f82275917d6eab47a
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  3. A

    Caribbean Population Density Estimate 2016

    • data.amerigeoss.org
    • caribbeangeoportal.com
    esri rest, html
    Updated Mar 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Caribbean Population Density Estimate 2016 [Dataset]. https://data.amerigeoss.org/dataset/caribbean-population-density-estimate-2016
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Mar 20, 2020
    Dataset provided by
    Caribbean GeoPortal
    Area covered
    Caribbean
    Description

    This map features the World Population Density Estimate 2016 layer for the Caribbean region. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world.


    Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster.

    A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer.
    Dataset Summary

    Each cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers:
    To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:
    • Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system.
    • Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator.
    • No Data: -1
    • Bit Depth: 32-bit signed
    This layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.

    Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.

    What can you do with this layer?

    This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:
    • 100 - Rural (3.2% [0.7%] of all people live at this density or lower)
    • 400 - Settled (13.3% [4.1%] of all people live at this density or lower)
    • 1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)
    • 16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)
    • 26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher)
    • Values

  4. S

    Nigeria - Population density

    • data.subak.org
    • cloud.csiss.gmu.edu
    • +1more
    tiff
    Updated Feb 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nigeria - Population density [Dataset]. https://data.subak.org/dataset/nigeria-population-density-2015
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    WorldPop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Nigeria
    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata.

    DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted.

    REGION: Africa

    SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator)

    PROJECTION: Geographic, WGS84

    UNITS: Estimated persons per grid square

    MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743.

    FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org)

    FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.

    Nigeria data available from WorldPop here.

  5. a

    Urban Density Footprint in 2020

    • hub.arcgis.com
    • cacgeoportal.com
    • +4more
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Urban Density Footprint in 2020 [Dataset]. https://hub.arcgis.com/maps/9a541c1fd0884f898435fc48b9a7beb7
    Explore at:
    Dataset updated
    Apr 2, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This webmap is a subset of Global Urban Density Footprint in 2020 Tile Image Layer. This layer represents an estimate of the footprint of urban settings in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis. This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers.Also see the Populated Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for the footprint of total population.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 1499 to NoData (Null) and all other values become 1.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.

  6. k

    Population density by region

    • datasource.kapsarc.org
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Population density by region [Dataset]. https://datasource.kapsarc.org/explore/dataset/population-density-by-region-2010-2022/
    Explore at:
    Dataset updated
    Oct 22, 2024
    Description

    Explore population density by region from 2010 to 2022. Analyze the data and trends to understand population distribution and growth.

    Population Statistics, Population Density, Growth Trends

    People and society, Population Statistics, Populationhttps://data.kapsarc.org for timely data to advance Demography research.

  7. GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version...

    • zenodo.org
    tiff
    Updated Sep 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2024). GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version 2.0-test-beta) [Dataset]. http://doi.org/10.5281/zenodo.11071404
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Sep 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Usage Notice

    This version is not recommended for download. Please check the newest version.

    We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.

    Thank you for your continued support of the GlobPOP.

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  8. S

    Indonesia - Population density

    • data.subak.org
    tiff
    Updated Feb 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2023). Indonesia - Population density [Dataset]. https://data.subak.org/dataset/indonesia-population-density-2015
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    WorldPop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata.

    DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted.

    REGION: Africa

    SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator)

    PROJECTION: Geographic, WGS84

    UNITS: Estimated persons per grid square

    MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743.

    FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org)

    FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.

    Indonesia data available from WorldPop here.

  9. Cheirogaleus population density meta-analysis data

    • zenodo.org
    • datadryad.org
    bin
    Updated Jun 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Hending; Daniel Hending (2022). Cheirogaleus population density meta-analysis data [Dataset]. http://doi.org/10.5061/dryad.4mw6m908x
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 4, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Daniel Hending; Daniel Hending
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Aim: Global animal populations are in decline due to destruction and degradation of their natural habitat. Understanding the factors that determine the distribution and density of threatened animal populations is therefore now a crucial component of their study and conservation. The Cheirogaleidae are a diverse family of small-bodied, nocturnal lemurs that are widespread throughout the forests of Madagascar. However, many cheirogaleid lemurs are now highly threatened with extinction and the environmental factors that determine their distribution and population density are still little known. Here, I investigated the environmental drivers of Cheirogaleidae population density at genus level.

    Location: Various forest sites across Madagascar.

    Methods: I investigated how six environmental variables affect Cheirogaleidae population density at the genus level via random effect meta-analyses. I then used a Generalized Linear Mixed-effects Model to identify the primary predictors of Cheirogaleidae population density. Finally, I investigated how the population density of this family of lemurs varies between protected and unprotected areas of Madagascar via a GLM analysis.

    Results: My results indicate that the relationships between the tested environmental factors and population density are genus-specific among the Cheirogaleidae. Rather remarkably, the density of Microcebus appears to have a profoundly positive relationship with anthropogenic disturbance and a negative relationship with forest cover, a finding that is also reflected by larger population densities within unprotected areas in comparison to localities within Madagascar's protected area network.

    Main Conclusions: The results of this study are highly encouraging for the conservation of the Cheirogaleidae and highlight the remarkable resilience of these lemurs to habitat degradation and anthropogenic activity. However, this study also outlines the dearth of knowledge that we have for many species, and why these data are urgently needed to understand the biogeography and ecology of threatened animal populations and implement successful conservation.

  10. A

    ‘Structure according to population density. EPF (API identifier: 24965)’...

    • analyst-2.ai
    Updated May 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Structure according to population density. EPF (API identifier: 24965)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-europa-eu-structure-according-to-population-density-epf-api-identifier-24965-4d82/aea7d13e/?v=grid
    Explore at:
    Dataset updated
    May 23, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Structure according to population density. EPF (API identifier: 24965)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/urn-ine-es-tabla-t3-381-24965 on 07 January 2022.

    --- Dataset description provided by original source is as follows ---

    Table of INEBase Structure according to population density. Annual. National. Household Budget Survey (HBS)

    --- Original source retains full ownership of the source dataset ---

  11. Values of regional population density.

    • plos.figshare.com
    xlsx
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes Müller; Aleksandr Diachenko (2023). Values of regional population density. [Dataset]. http://doi.org/10.1371/journal.pone.0208739.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Johannes Müller; Aleksandr Diachenko
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These values were included in the analysis as they were estimated by the authors of the original studies. (XLSX)

  12. a

    COUNTIES

    • mce-data-uscensus.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Feb 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). COUNTIES [Dataset]. https://mce-data-uscensus.hub.arcgis.com/datasets/counties-41
    Explore at:
    Dataset updated
    Feb 2, 2024
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Population. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the point by Population Density and size of the point by Total Population. The size of the symbol represents the total count of housing units. Population Density was calculated based on the total population and area of land fields, which both came from the U.S. Census Bureau. Formula used for Calculating the Pop Density (B01001_001E/GEO_LAND_AREA_SQ_KM). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B01001, B09020Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  13. e

    Mangrove Soil Carbon and Population Density Database

    • knb.ecoinformatics.org
    • search.dataone.org
    Updated Dec 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shih-Chieh Chien; Charles Knoble; Jennifer Krumins (2024). Mangrove Soil Carbon and Population Density Database [Dataset]. http://doi.org/10.5063/F1JD4V80
    Explore at:
    Dataset updated
    Dec 8, 2024
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Shih-Chieh Chien; Charles Knoble; Jennifer Krumins
    Time period covered
    Jan 1, 2022 - Mar 31, 2022
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    This dataset is used to present the meta-analysis results showing the relationship between population density and mangrove soil carbon stocks. Currently the manuscript is under review, and the data file is not available to the public. The data and information in the PDF file are masked. The database will be in free open-access for future reference upon publication. We apologize for any inconvenience. Note: Once the paper is published, the information and availability of this database will be updated as soon as possible. (Updated: This work has been published. For the database, please refer to the excel file and ignore the pdf one. Thank you for your interest and being patient with us)

  14. Sensitivity analysis of linear mixed models (random intercept, fixed slope)...

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karla Therese L. Sy; Laura F. White; Brooke E. Nichols (2023). Sensitivity analysis of linear mixed models (random intercept, fixed slope) using (a) deaths only, (b) removing counties within 15 miles of high-density counties, and (c) removing high influence counties. [Dataset]. http://doi.org/10.1371/journal.pone.0249271.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Karla Therese L. Sy; Laura F. White; Brooke E. Nichols
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sensitivity analysis of linear mixed models (random intercept, fixed slope) using (a) deaths only, (b) removing counties within 15 miles of high-density counties, and (c) removing high influence counties.

  15. d

    2000 population density by block group for the conterminous United States.

    • datadiscoverystudio.org
    gz, tgz
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). 2000 population density by block group for the conterminous United States. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/402ead33b4534fdd97524c10eebe5acc/html
    Explore at:
    gz, tgzAvailable download formats
    Dataset updated
    Jun 8, 2018
    Area covered
    United States
    Description

    description: This data set represents 2000 population density by block group as a 100-m grid using data from the 2000 Census of Population and Housing. The demographic data is from CensusCD 2000 Short Form Blocks published by GeoLytics, E. Brunswick, NJ, which uses the 2000 Census Summary File 1 (SF 1). Grid cell values represent population density in people per square kilometer multiplied by 10 so that the data could be stored as integer.; abstract: This data set represents 2000 population density by block group as a 100-m grid using data from the 2000 Census of Population and Housing. The demographic data is from CensusCD 2000 Short Form Blocks published by GeoLytics, E. Brunswick, NJ, which uses the 2000 Census Summary File 1 (SF 1). Grid cell values represent population density in people per square kilometer multiplied by 10 so that the data could be stored as integer.

  16. d

    Global Human Footprint Data Set

    • search.dataone.org
    Updated Nov 17, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Socioeconomic Data and Applications Center (SEDAC), Center for International Earth Science Information Network (CIESIN) (2014). Global Human Footprint Data Set [Dataset]. https://search.dataone.org/view/Global_Human_Footprint_Data_Set.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Socioeconomic Data and Applications Center (SEDAC), Center for International Earth Science Information Network (CIESIN)
    Time period covered
    Jan 1, 1995 - Jan 1, 2004
    Area covered
    Description

    The Global Human Footprint Data Set of the Last of the Wild Project, Version 2, 2005 (LWP-2) presents the Human Influence Index (HII) normalized by biome and realm. The HII is a global dataset of 1-kilometer grid cells created from nine global data layers covering human population pressure (population density population settlements), human land use and infrastructure (built up areas, nighttime lights, land use/land cover), and human access (coastlines, roads, railroads, navigable rivers). The data set can be downloaded in Band Interleaf (BIL) format. The data set was produced by the Wildlife Conservation Society (WCS) and the Columbia University Center for International Earth Science Information Network (CIESIN). The purpose is to provide an upgrade to existing maps of wild areas, which in turn can be used in modeling efforts, wildlife conservation planning, natural resource management, policy-making, biodiversity studies and human-environment interactions.

  17. Urban and Rural Population Dot Density Patterns in the US (2020 Census)

    • data-bgky.hub.arcgis.com
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Urban and Rural Population Dot Density Patterns in the US (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/datasets/esri::urban-and-rural-population-dot-density-patterns-in-the-us-2020-census
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map uses dot density patterns to indicate which population is larger in each area: urban (green) or rural (blue). Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico.The U.S. Census designates each census block as part of an urban area or as rural. Larger geographies in this map such as block group, tract, county and state can therefore have a mix of urban and rural population. This map illustrates the 100% urban areas with all green dots, and 100% rural areas in dark blue dots. Areas with mixed urban/rural population have a proportional mix of green and blue dots to give a visual indication of where change may be happening. From the Census:"The Census Bureau’s urban-rural classification is a delineation of geographic areas, identifying both individual urban areas and the rural area of the nation. The Census Bureau’s urban areas represent densely developed territory, and encompass residential, commercial, and other non-residential urban land uses. The Census Bureau delineates urban areas after each decennial census by applying specified criteria to decennial census and other data. Rural encompasses all population, housing, and territory not included within an urban area.For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  18. d

    Aggregate Analysis Workbooks [Monitoring NER Gray Wolf Population and Wolf...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Aggregate Analysis Workbooks [Monitoring NER Gray Wolf Population and Wolf Effects on NER Elk Distribution and Density] [Dataset]. https://catalog.data.gov/dataset/aggregate-analysis-workbooks-monitoring-ner-gray-wolf-population-and-wolf-effects-on-ner-e
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    U.S. Fish and Wildlife Service
    Description

    Two workbooks were constructed to log observation data records and performs preliminary analysis of the 2012-2013 and 2013-2014 seasons Elk and Bison Density study on the NER. The two workbooks were: A. Density Data Records for the 12-13 and 13-14 Seasons B. Aggregate of All Observation Data Both of these workbooks are included as separate digital holdings, along with another digital holding that describes the contents and use of the workbooks.

  19. N

    Cambridge, MA Age Cohorts Dataset: Children, Working Adults, and Seniors in...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Cambridge, MA Age Cohorts Dataset: Children, Working Adults, and Seniors in Cambridge - Population and Percentage Analysis [Dataset]. https://www.neilsberg.com/research/datasets/603fbbbd-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Cambridge, Massachusetts
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Cambridge population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Cambridge. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 - 64 years with a poulation of 89,162 (76.28% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the Cambridge population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in Cambridge is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the Cambridge is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Cambridge Population by Age. You can refer the same here

  20. N

    DeKalb County, IN Age Cohorts Dataset: Children, Working Adults, and Seniors...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). DeKalb County, IN Age Cohorts Dataset: Children, Working Adults, and Seniors in DeKalb County - Population and Percentage Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/dekalb-county-in-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    DeKalb County
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the DeKalb County population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of DeKalb County. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 to 64 years with a poulation of 25,587 (58.71% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the DeKalb County population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in DeKalb County is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the DeKalb County is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for DeKalb County Population by Age. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘B0107 - 2002 Population Density and Area Size’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-europa-eu-b0107-2002-population-density-and-area-size-8139/latest

‘B0107 - 2002 Population Density and Area Size’ analyzed by Analyst-2

Explore at:
Dataset updated
Jan 19, 2022
Dataset authored and provided by
Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Analysis of ‘B0107 - 2002 Population Density and Area Size’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/84fbd513-454a-4789-847d-07c312e7f852 on 19 January 2022.

--- Dataset description provided by original source is as follows ---

2002 Population Density and Area Size

--- Original source retains full ownership of the source dataset ---

Search
Clear search
Close search
Google apps
Main menu