Facebook
TwitterMogadishu in Somalia led the ranking of cities with the highest population density in 2025, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a list of cities worldwide by population density. The population, population density and land area for the cities listed are based on the entire city proper, the defined boundary or border of a city or the city limits of the city. The population density of the cities listed is based on the average number of people living per square kilometer or per square mile. This list does not refer to the population, population density or land area of the greater metropolitan area or urban area, nor particular districts in any of the cities listed.
Facebook
TwitterMonaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset contains comprehensive information on population densities, rental and real estate prices, transport times and land uses from around the world. It provides an in-depth range of cities, allowing for a comprehensive snapshot of worldwide urban development. Use this data to uncover how regional differences in population, infrastructure and regional designations can affect mobility patterns as well as economic and environmental issues linked to city life. Gridded key indicators including public transport, private cars and much more are included for analysis purposes within a fully reproducible workflow system. This data is an invaluable asset for understanding the complexities of global urban areas from both social and ecological perspectives
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a comprehensive comparison of population density, rent and real estate prices, transport times and land use across 192 different cities around the world. As such, it offers a valuable resource for studying the effects of urban area development on aspects such as mobility and living patterns around the world. In this guide we'll provide an overview of how to use this data set to best gain insight.
- Get familiar with the structure of the data: The dataset contains more than 200 columns divided among four main categories: population density, rent/real estate prices, transport time & information and land use information from government sources and survey reports. All columns are clearly labeled meaning that it's easy to quickly identify which column contains what kind of information
- Identify important variables for your particular study topic: Depending upon your particular goal or research question you may want to focus on certain columns or categories more than others in order to reveal patterns between areas or locations within cities or regions
- Analyze existing correlations between variables & locations: Once you're familiar with all available data then you can start analyzing existing correlations - either visualizing them as maps or charts in multiple software packages like Tableau or R - by joining above mentioned data set with location coordinates (latitude/longitude) provided in the global urban indicators dataset
- Analyzing the correlation between real estate prices, transport times and land use in urban areas to make decisions about how to improve city infrastructure.
- Examining the impact of different external factors on population densities, such as transportation links and natural preservation policies.
- Comparing urban development indicators across different cities around the world to better understand global trends in urbanization
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: TransportData.csv | Column name | Description | |:--------------------|:---------------------------------------------------------------| | X | X coordinate of the city. (Numeric) | | Y | Y coordinate of the city. (Numeric) | | Area | Area of the city. (Numeric) | | City | Name of the city. (String) | | Country | Country of the city. (String) | | Continent | Continent of the city. (String) | | dCenter | Distance to the city center. (Numeric) | | TransportSource | Source of the transport data. (String) | | RushHour | Whether the transport data is from rush hour or not. (Boolean) | | TransportYear | Year of the transport data. (Numeric) | | DistanceDriving | Driving distance. (Numeric) ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vietnam Population Density: SE: Ho Chi Minh city data was reported at 4,513.100 Person/sq km in 2023. This records an increase from the previous number of 4,481.000 Person/sq km for 2022. Vietnam Population Density: SE: Ho Chi Minh city data is updated yearly, averaging 4,196.400 Person/sq km from Dec 2011 (Median) to 2023, with 13 observations. The data reached an all-time high of 4,513.100 Person/sq km in 2023 and a record low of 3,633.100 Person/sq km in 2011. Vietnam Population Density: SE: Ho Chi Minh city data remains active status in CEIC and is reported by General Statistics Office. The data is categorized under Global Database’s Vietnam – Table VN.G003: Population Density: By Provinces.
Facebook
TwitterPopulation of Urban Agglomerations with 300,000 Inhabitants or more in 2014, by city, 1950-2030 (thousands). Data for 1,692 cities contained in the Excel file. Note: Each country has its own definition of what is 'urban' and therefore use exercise caution when comparing cities in different countries. Data available from the United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, CD-ROM Edition. Further detail of population estimates, land area, and population density for world urban areas with over 500,000 people (924 areas) is available with Demographia's World Urban Areas report (2014). Much of this data is based on the UN urban agglomerations, though a range of other sources are also used.
Facebook
TwitterIn 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Facebook
TwitterThis service contains population density polygons, country boundaries, and city locations for the world. The map is color coded based on the number of persons per square mile (per every 1.609 kilometers square). Population data sources included national population censuses, the United Nations demographic yearbooks, and others. In general, data currency ranged from 1981 to 1994. This is a sample service hosted by ESRI, powered by ArcGIS Server. ESRI has provided this example so that you may practice using ArcGIS APIs for JavaScript, Flex, and Silverlight. ESRI reserves the right to change or remove this service at any time and without notice.
Facebook
TwitterAs of 2025, Tokyo-Yokohama in Japan was the largest world urban agglomeration, with 37 million people living there. Delhi ranked second with more than 34 million, with Shanghai in third with more than 30 million inhabitants.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Welcome to the Ultimate Geographic Data Collection, a comprehensive dataset providing valuable geographic insights. This dataset includes U.S. Zip Codes, U.S. Cities, and World Cities data, making it an essential resource for developers, data analysts, and researchers. Whether you're building location-based applications, conducting geographic analysis, or working on machine learning projects, this dataset offers an extensive and curated collection of location-based information.
U.S. Zip Codes Database (Free Version) 🏙️
U.S. Cities Database (Free Version) 🌆
Basic World Cities Database 🗺️
Comprehensive & Pro World Cities Database (Density Data) 🌎
✅ You CAN:
🚫 You CANNOT:
Enhance your geographic projects with this powerful dataset today! 🚀
📩 For any inquiries, licensing requests, or attribution clarifications, contact the dataset provider.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
Country: Name of the country.
Density (P/Km2): Population density measured in persons per square kilometer.
Abbreviation: Abbreviation or code representing the country.
Agricultural Land (%): Percentage of land area used for agricultural purposes.
Land Area (Km2): Total land area of the country in square kilometers.
Armed Forces Size: Size of the armed forces in the country.
Birth Rate: Number of births per 1,000 population per year.
Calling Code: International calling code for the country.
Capital/Major City: Name of the capital or major city.
CO2 Emissions: Carbon dioxide emissions in tons.
CPI: Consumer Price Index, a measure of inflation and purchasing power.
CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
Currency_Code: Currency code used in the country.
Fertility Rate: Average number of children born to a woman during her lifetime.
Forested Area (%): Percentage of land area covered by forests.
Gasoline_Price: Price of gasoline per liter in local currency.
GDP: Gross Domestic Product, the total value of goods and services produced in the country.
Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
Largest City: Name of the country's largest city.
Life Expectancy: Average number of years a newborn is expected to live.
Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
Minimum Wage: Minimum wage level in local currency.
Official Language: Official language(s) spoken in the country.
Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
Physicians per Thousand: Number of physicians per thousand people.
Population: Total population of the country.
Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
Tax Revenue (%): Tax revenue as a percentage of GDP.
Total Tax Rate: Overall tax burden as a percentage of commercial profits.
Unemployment Rate: Percentage of the labor force that is unemployed.
Urban Population: Percentage of the population living in urban areas.
Latitude: Latitude coordinate of the country's location.
Longitude: Longitude coordinate of the country's location.
Potential Use Cases
Analyze population density and land area to study spatial distribution patterns.
Investigate the relationship between agricultural land and food security.
Examine carbon dioxide emissions and their impact on climate change.
Explore correlations between economic indicators such as GDP and various socio-economic factors.
Investigate educational enrollment rates and their implications for human capital development.
Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
Study labor market dynamics through indicators such as labor force participation and unemployment rates.
Investigate the role of taxation and its impact on economic development.
Explore urbanization trends and their social and environmental consequences.
Facebook
TwitterIn 2022, the estimated population density of China was around 150.42 people per square kilometer. That year, China's population size declined for the first time in decades. Although China is the most populous country in the world, its overall population density is not much higher than the average population density in Asia. Uneven population distribution China is one of the largest countries in terms of land area, and its population density figures vary dramatically from region to region. Overall, the coastal regions in the East and Southeast have the highest population densities, as they belong to the more economically developed regions of the country. These coastal regions also have a higher urbanization rate. On the contrary, the regions in the West are covered with mountain landscapes which are not suitable for the development of big cities. Populous cities in China Several Chinese cities rank among the most populous cities in the world. According to estimates, Beijing and Shanghai will rank among the top ten megacities in the world by 2030. Both cities are also the largest Chinese cities in terms of land area. The previous colonial regions, Macao and Hong Kong, are two of the most densely populated cities in the world.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Philippines Population Density: NCR: City of Manila data was reported at 71,263.000 Person/sq km in 2015. This records an increase from the previous number of 66,140.000 Person/sq km for 2010. Philippines Population Density: NCR: City of Manila data is updated yearly, averaging 65,706.000 Person/sq km from Dec 1975 (Median) to 2015, with 8 observations. The data reached an all-time high of 71,263.000 Person/sq km in 2015 and a record low of 59,164.640 Person/sq km in 1975. Philippines Population Density: NCR: City of Manila data remains active status in CEIC and is reported by Philippine Statistics Authority. The data is categorized under Global Database’s Philippines – Table PH.G005: Population Density.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Understanding scaling relations of social and environmental attributes of urban systems is necessary for effectively managing cities. Urban scaling theory (UST) has assumed that population density scales positively with city size. We present a new global analysis using a publicly available database of 933 cities from 38 countries. Our results showed that (18/38) 47% of countries analyzed supported increasing density scaling (pop ~ area) with exponents ~⅚ as UST predicts. In contrast, 17 of 38 countries (~45%) exhibited density scalings statistically indistinguishable from constant population densities across cities of varying sizes. These results were generally consistent in years spanning four decades from 1975 to 2015. Importantly, density varies by an order of magnitude between regions and countries and decreases in more developed economies. Our results (i) point to how economic and regional differences may affect the scaling of density with city size and (ii) show how understanding country- and region-specific strategies could inform effective management of urban systems for biodiversity, public health, conservation and resiliency from local to global scales.200 word statement of contribution: Urban Scaling Theory (UST) is a general scaling framework that makes quantitative predictions for how many urban attributes spanning physical, biological and social dimensions scale with city size; thus, UST has great implications in guiding future city developments. A major assumption of UST is that larger cities become denser. We evaluated this assumption using a publicly available global dataset of 933 cities in 38 countries. Our scaling analysis of population size and area of cities revealed that while many countries analyzed showed increasing densities with city size, about 45% of countries showed constant densities across cities. These results question a key assumption of UST. Our results suggest policies and management strategies for biodiversity conservation, public health and sustainability of urban systems may need to be tailored to national and regional scaling relations to be effective.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Population Density: People per Square Km data was reported at 3.382 Person/sq km in 2022. This records an increase from the previous number of 3.339 Person/sq km for 2021. Australia Population Density: People per Square Km data is updated yearly, averaging 2.263 Person/sq km from Dec 1961 (Median) to 2022, with 62 observations. The data reached an all-time high of 3.382 Person/sq km in 2022 and a record low of 1.365 Person/sq km in 1961. Australia Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Australia – Table AU.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.;Food and Agriculture Organization and World Bank population estimates.;Weighted average;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Philippines Population Density: NCR: Quezon City data was reported at 17,099.000 Person/sq km in 2015. This records an increase from the previous number of 16,084.000 Person/sq km for 2010. Philippines Population Density: NCR: Quezon City data is updated yearly, averaging 12,123.000 Person/sq km from Dec 1975 (Median) to 2015, with 8 observations. The data reached an all-time high of 17,099.000 Person/sq km in 2015 and a record low of 5,572.883 Person/sq km in 1975. Philippines Population Density: NCR: Quezon City data remains active status in CEIC and is reported by Philippine Statistics Authority. The data is categorized under Global Database’s Philippines – Table PH.G005: Population Density.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Philippines Population Density: NCR: City of Muntinlupa data was reported at 12,692.000 Person/sq km in 2015. This records an increase from the previous number of 11,571.000 Person/sq km for 2010. Philippines Population Density: NCR: City of Muntinlupa data is updated yearly, averaging 9,800.500 Person/sq km from Dec 1975 (Median) to 2015, with 8 observations. The data reached an all-time high of 12,692.000 Person/sq km in 2015 and a record low of 2,375.955 Person/sq km in 1975. Philippines Population Density: NCR: City of Muntinlupa data remains active status in CEIC and is reported by Philippine Statistics Authority. The data is categorized under Global Database’s Philippines – Table PH.G005: Population Density.
Facebook
Twitterhttp://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj
This dataset describes counterfactual public transport networks that were simulated for 36 world cities, and the aggregate data discussed in the paper in which these data are published. UNIT OF MEASURE: Meters of network length. RESOLUTION: 1:1000000. COMPLETENESS: 100%. POLICY CONTEXT: Regional and urban policies. METHODOLOGY: Network expansion modelling. DATA SOURCES: FUA boundaries and population sizes according to 1km GHSL population grids (release 2019). LEVEL OF AGGREGATION: cities defined on population density clusters. UNCERTAINTY AND LIMITATIONS: Data based on simulation exercise with the explicit aim of creating counterfactual networks.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Philippines Population Density: NCR: City of Valenzuela data was reported at 13,195.000 Person/sq km in 2015. This records an increase from the previous number of 12,236.000 Person/sq km for 2010. Philippines Population Density: NCR: City of Valenzuela data is updated yearly, averaging 9,810.500 Person/sq km from Dec 1975 (Median) to 2015, with 8 observations. The data reached an all-time high of 13,195.000 Person/sq km in 2015 and a record low of 3,204.362 Person/sq km in 1975. Philippines Population Density: NCR: City of Valenzuela data remains active status in CEIC and is reported by Philippine Statistics Authority. The data is categorized under Global Database’s Philippines – Table PH.G005: Population Density.
Facebook
TwitterMogadishu in Somalia led the ranking of cities with the highest population density in 2025, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.