Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second smallest country, with an area of about two square kilometers, and its population only numbers around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer stands at about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase as well. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 27 countries was 187 people per square km. The highest value was in Malta: 1620 people per square km and the lowest value was in Finland: 18 people per square km. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.
As of 2024, Barbados was the most densely populated country in Latin America and the Caribbean, with approximately 652 people per square kilometer. In that same year, Argentina's population density was estimated at approximately 16.7 people per square kilometer.
Mauritius had the highest population density level in Africa as of 2023, with nearly 630 inhabitants per square kilometer. The country has also one of the smallest territories on the continent, which contributes to the high density. As a matter of fact, the majority of African countries with the largest concentration of people per square kilometer have the smallest geographical area as well. The exception is Nigeria, which ranks among the largest territorial countries in Africa and is very densely populated at the same time. After all, Nigeria has also the largest population on the continent.
In 2021, El Salvador had the highest population density in Central America, with over 300 people per square kilometer. The second place was Guatemala, slightly over half the density in El Salvador. In 2022, Guatemala ranked as the most populated country in the region, with over 18 million inhabitants.
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Mogadishu in Somalia led the ranking of cities with the highest population density in 2023, with 33,244 residents per square kilometer. When it comes to countries, Monaco is the most populated state worldwide.
The statistic shows the 30 largest countries in the world by area. Russia is the largest country by far, with a total area of about 17 million square kilometers.
Population of Russia
Despite its large area, Russia - nowadays the largest country in the world - has a relatively small total population. However, its population is still rather large in numbers in comparison to those of other countries. In mid-2014, it was ranked ninth on a list of countries with the largest population, a ranking led by China with a population of over 1.37 billion people. In 2015, the estimated total population of Russia amounted to around 146 million people. The aforementioned low population density in Russia is a result of its vast landmass; in 2014, there were only around 8.78 inhabitants per square kilometer living in the country. Most of the Russian population lives in the nation’s capital and largest city, Moscow: In 2015, over 12 million people lived in the metropolis.
https://deepfo.com/documentacion.php?idioma=enhttps://deepfo.com/documentacion.php?idioma=en
countries that start with Q. name, long name, population (source), population, constitutional form, drives on, head of state authority, Main continent, number of airports, Airports - with paved runways, Airports - with unpaved runways, Area, Birth rate, calling code, Children under the age of 5 years underweight, Current Account Balance, Death rate, Debt - external, Economic aid donor, Electricity consumption, Electricity consumption per capita, Electricity exports, Electricity imports, Electricity production, Exports, GDP - per capita (PPP), GDP (purchasing power parity), GDP real growth rate, Gross national income, Human Development Index, Health expenditures, Heliports, HIV AIDS adult prevalence rate, HIV AIDS deaths, HIV AIDS people living with HIV AIDS, Hospital bed density, capital city, Currency, Imports, Industrial production growth rate, Infant mortality rate, Inflation rate consumer prices, Internet hosts, internet tld, Internet users, Investment (gross fixed), iso 3166 code, ISO CODE, Labor force, Life expectancy at birth, Literacy, Manpower available for military service, Manpower fit for military service, Manpower reaching militarily age annually, is democracy, Market value of publicly traded shares, Maternal mortality rate, Merchant marine, Military expenditures percent of GDP, Natural gas consumption, Natural gas consumption per capita, Natural gas exports, Natural gas imports, Natural gas production, Natural gas proved reserves, Net migration rate, Obesity adult prevalence rate, Oil consumption, Oil consumption per capita, Oil exports, Oil imports, Oil production, Oil proved reserves, Physicians density, Population below poverty line, Population census, Population density, Population estimate, Population growth rate, Public debt, Railways, Reserves of foreign exchange and gold, Roadways, Stock of direct foreign investment abroad, Stock of direct foreign investment at home, Telephones main lines in use, Telephones main lines in use per capita, Telephones mobile cellular, Telephones mobile cellular per capita, Total fertility rate, Unemployment rate, Unemployment, youth ages 15-24, Waterways, valley, helicopter, canyon, artillery, crater, religion, continent, border, Plateau, marsh, Demonym
Nigeria has the largest population in Africa. As of 2024, the country counted over 232.6 million individuals, whereas Ethiopia, which ranked second, has around 132 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 116 million people. In terms of inhabitants per square kilometer, Nigeria only ranks seventh, while Mauritius has the highest population density on the whole African continent. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.
https://deepfo.com/documentacion.php?idioma=enhttps://deepfo.com/documentacion.php?idioma=en
countries capital city São Tomé. name, long name, population (source), population, constitutional form, drives on, head of state authority, Main continent, number of airports, Airports - with paved runways, Airports - with unpaved runways, Area, Birth rate, calling code, Children under the age of 5 years underweight, Current Account Balance, Death rate, Debt - external, Economic aid donor, Electricity consumption, Electricity consumption per capita, Electricity exports, Electricity imports, Electricity production, Exports, GDP - per capita (PPP), GDP (purchasing power parity), GDP real growth rate, Gross national income, Human Development Index, Health expenditures, Heliports, HIV AIDS adult prevalence rate, HIV AIDS deaths, HIV AIDS people living with HIV AIDS, Hospital bed density, capital city, Currency, Imports, Industrial production growth rate, Infant mortality rate, Inflation rate consumer prices, Internet hosts, internet tld, Internet users, Investment (gross fixed), iso 3166 code, ISO CODE, Labor force, Life expectancy at birth, Literacy, Manpower available for military service, Manpower fit for military service, Manpower reaching militarily age annually, is democracy, Market value of publicly traded shares, Maternal mortality rate, Merchant marine, Military expenditures percent of GDP, Natural gas consumption, Natural gas consumption per capita, Natural gas exports, Natural gas imports, Natural gas production, Natural gas proved reserves, Net migration rate, Obesity adult prevalence rate, Oil consumption, Oil consumption per capita, Oil exports, Oil imports, Oil production, Oil proved reserves, Physicians density, Population below poverty line, Population census, Population density, Population estimate, Population growth rate, Public debt, Railways, Reserves of foreign exchange and gold, Roadways, Stock of direct foreign investment abroad, Stock of direct foreign investment at home, Telephones main lines in use, Telephones main lines in use per capita, Telephones mobile cellular, Telephones mobile cellular per capita, Total fertility rate, Unemployment rate, Unemployment, youth ages 15-24, Waterways, valley, helicopter, canyon, artillery, crater, religion, continent, border, Plateau, marsh, Demonym
https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.3/customlicense?persistentId=doi:10.23708/7TANIWhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.3/customlicense?persistentId=doi:10.23708/7TANIW
This dataset is a shapefile representing the proportion of threatened endemic species (both plants and animals) in 247 countries along with associated environmental and socioeconomic drivers. The geographic coordinate system is World Geodetic System 1984 (EPSG: 4326). Information on a total of 65,125 endemic species including 27,294 globally threatened endemic species (55% threatened plant species, 45% threatened animal species) was extracted from the IUCN Red List. The categories of threatened species used in the analyses included vulnerable (VU), endangered (EN), critically endangered (CR), extinct in the wild (EW) and globally extinct (EX). We calculated the proportion of globally threatened endemic species among the total number of assessed endemic species per country (Chamberlain et al., 2020). Associated environmental socioeconomic regional correlates included: 1) Cropland: The proportion of each country covered by crops (including food, fibre and fodder crops and pasture grasses) was determined based on a FAO global map with a resolution of 5 arc-minutes (von Velthuizen et al., 2007); 2) HANPP: The proportion of net primary production appropriated by humans (HANPP) by harvesting or burning biomass and by converting natural ecosystems to managed lands with lower productivity was derived for the year 2010 from Krausmann et al. (2013); 3) Delta HANPP: We also computed the increase in HANPP over the period 1962-2010 (Krausmann et al., 2013); 4) per area GDP: The per area gross domestic product (GDP, in international $) was obtained by calculating the median value over each country of all 5 arcmin cells of a recently gridded GDP dataset (Kummu et al., 2018); 5) Human Footprint (HFP): The global terrestrial human footprint (HFP) is an index integrating the influence of built environments, population density, electric infrastructure, croplands, pasture lands, roads, railways, and navigable waterways on the environment based on remotely-sensed and bottom-up survey information (Venter et al., 2016). We extracted from a 1 km resolution HFP map the median value over each country in 2009; 6) Delta HFP: We also calculated the increase in median HFP over the period 1993-2009 (Venter et al., 2016); 7) Invasive alien plants: The richness of invasive alien vascular plant species recorded in each country was compiled by Essl et al. (2019); 8) Invasive alien animals: The richness of invasive alien animal species was derived from the Global Register of Introduced and Invasive Species database (http://griis.org/ accessed on 27-6-2018); 9) Delta temperature: Based on decadal climate maps produced by the IPCC over the last century with a 0.5° resolution, we calculated the median of the change in annual mean temperature (in °C) between 1901-1910 and 1981-1990 (Mitchell & Jones, 2005); 10) Delta rainfall: The same for annual precipitation (in mm); 11) Velocity temperature: We also calculated the median velocity of climate change based on the formula from Hamann et al. (2015) to evaluate the distance (in °) over which a species must migrate over the surface of the earth to maintain constant temperature conditions; 12) Velocity rainfall: The same for precipitation; 13) Roadless areas: The median area of a roadless fragment (in km²) was calculated from the global map of roadless areas published by Ibisch et al. (2016); 14) Wilderness areas: The proportion of wildlands (categories ‘wild woodlands' and ‘wild treeless and barren lands') was calculated from the anthropogenic biome map of Ellis et al. (2010); 15) Protected areas: The proportion of protected areas was estimated from the IUCN's shapefile of World Database on Protected Areas (https://www.iucn.org/theme/protected-areas/our-work/world-database-protected-areas); 16) Conservation spending: The mean annual conservation spending of each country (in international $) was taken from Waldron et al. (2017) to quantify investment to mitigate biodiversity loss; 17) Completeness of biodiversity information: We used data on the estimated percentage completeness of species records in GBIF, as assessed through comparison with independent estimates of native richness. Inventory effort indices available for vertebrates (Meyer et al., 2015) and vascular plants (Meyer et al., 2016) were merged into a single metric based upon an average weighted by estimated native species richness.
China is a vast and diverse country and population density in different regions varies greatly. In 2023, the estimated population density of the administrative area of Shanghai municipality reached about 3,922 inhabitants per square kilometer, whereas statistically only around three people were living on one square kilometer in Tibet. Population distribution in China China's population is unevenly distributed across the country: while most people are living in the southeastern half of the country, the northwestern half – which includes the provinces and autonomous regions of Tibet, Xinjiang, Qinghai, Gansu, and Inner Mongolia – is only sparsely populated. Even the inhabitants of a single province might be unequally distributed within its borders. This is significantly influenced by the geography of each region, and is especially the case in the Guangdong, Fujian, or Sichuan provinces due to their mountain ranges. The Chinese provinces with the largest absolute population size are Guangdong in the south, Shandong in the east and Henan in Central China. Urbanization and city population Urbanization is one of the main factors which have been reshaping China over the last four decades. However, when comparing the size of cities and urban population density, one has to bear in mind that data often refers to the administrative area of cities or urban units, which might be much larger than the contiguous built-up area of that city. The administrative area of Beijing municipality, for example, includes large rural districts, where only around 200 inhabitants are living per square kilometer on average, while roughly 20,000 residents per square kilometer are living in the two central city districts. This is the main reason for the huge difference in population density between the four Chinese municipalities Beijing, Tianjin, Shanghai, and Chongqing shown in many population statistics.
In order to develop various methods of comparable data collection on health and health system responsiveness WHO started a scientific survey study in 2000-2001. This study has used a common survey instrument in nationally representative populations with modular structure for assessing health of indviduals in various domains, health system responsiveness, household health care expenditures, and additional modules in other areas such as adult mortality and health state valuations.
The health module of the survey instrument was based on selected domains of the International Classification of Functioning, Disability and Health (ICF) and was developed after a rigorous scientific review of various existing assessment instruments. The responsiveness module has been the result of ongoing work over the last 2 years that has involved international consultations with experts and key informants and has been informed by the scientific literature and pilot studies.
Questions on household expenditure and proportionate expenditure on health have been borrowed from existing surveys. The survey instrument has been developed in multiple languages using cognitive interviews and cultural applicability tests, stringent psychometric tests for reliability (i.e. test-retest reliability to demonstrate the stability of application) and most importantly, utilizing novel psychometric techniques for cross-population comparability.
The study was carried out in 61 countries completing 71 surveys because two different modes were intentionally used for comparison purposes in 10 countries. Surveys were conducted in different modes of in- person household 90 minute interviews in 14 countries; brief face-to-face interviews in 27 countries and computerized telephone interviews in 2 countries; and postal surveys in 28 countries. All samples were selected from nationally representative sampling frames with a known probability so as to make estimates based on general population parameters.
The survey study tested novel techniques to control the reporting bias between different groups of people in different cultures or demographic groups ( i.e. differential item functioning) so as to produce comparable estimates across cultures and groups. To achieve comparability, the selfreports of individuals of their own health were calibrated against well-known performance tests (i.e. self-report vision was measured against standard Snellen's visual acuity test) or against short descriptions in vignettes that marked known anchor points of difficulty (e.g. people with different levels of mobility such as a paraplegic person or an athlete who runs 4 km each day) so as to adjust the responses for comparability . The same method was also used for self-reports of individuals assessing responsiveness of their health systems where vignettes on different responsiveness domains describing different levels of responsiveness were used to calibrate the individual responses.
This data are useful in their own right to standardize indicators for different domains of health (such as cognition, mobility, self care, affect, usual activities, pain, social participation, etc.) but also provide a better measurement basis for assessing health of the populations in a comparable manner. The data from the surveys can be fed into composite measures such as "Healthy Life Expectancy" and improve the empirical data input for health information systems in different regions of the world. Data from the surveys were also useful to improve the measurement of the responsiveness of different health systems to the legitimate expectations of the population.
Sample survey data [ssd]
The sample was a multi-stage random probability sample representative of the population residing in urban and rural areas of Jordan. An advanced sample design method in 2 stages was used: 1. Jordan is administratively divided into 12 Governorates, each of which is subdivided into four regions. The survey was carried out in all four regions. 2. Selection of households within the Primary Sampling areas.
The sample structure was based on the estimated population structure elaborated on the basis of the data from the Jordan census of 1994. Statistical data acquired from the Block census had been used in the sample design of this study. The density of the population was classified into three categories: high, medium and low density areas.
The number of sampling units assigned for interviewing per Administrative Unit adequately represented the population density.
Face-to-face [f2f]
Data Coding At each site the data was coded by investigators to indicate the respondent status and the selection of the modules for each respondent within the survey design. After the interview was edited by the supervisor and considered adequate it was entered locally.
Data Entry Program A data entry program was developed in WHO specifically for the survey study and provided to the sites. It was developed using a database program called the I-Shell (short for Interview Shell), a tool designed for easy development of computerized questionnaires and data entry (34). This program allows for easy data cleaning and processing.
The data entry program checked for inconsistencies and validated the entries in each field by checking for valid response categories and range checks. For example, the program didn’t accept an age greater than 120. For almost all of the variables there existed a range or a list of possible values that the program checked for.
In addition, the data was entered twice to capture other data entry errors. The data entry program was able to warn the user whenever a value that did not match the first entry was entered at the second data entry. In this case the program asked the user to resolve the conflict by choosing either the 1st or the 2nd data entry value to be able to continue. After the second data entry was completed successfully, the data entry program placed a mark in the database in order to enable the checking of whether this process had been completed for each and every case.
Data Transfer The data entry program was capable of exporting the data that was entered into one compressed database file which could be easily sent to WHO using email attachments or a file transfer program onto a secure server no matter how many cases were in the file. The sites were allowed the use of as many computers and as many data entry personnel as they wanted. Each computer used for this purpose produced one file and they were merged once they were delivered to WHO with the help of other programs that were built for automating the process. The sites sent the data periodically as they collected it enabling the checking procedures and preliminary analyses in the early stages of the data collection.
Data quality checks Once the data was received it was analyzed for missing information, invalid responses and representativeness. Inconsistencies were also noted and reported back to sites.
Data Cleaning and Feedback After receipt of cleaned data from sites, another program was run to check for missing information, incorrect information (e.g. wrong use of center codes), duplicated data, etc. The output of this program was fed back to sites regularly. Mainly, this consisted of cases with duplicate IDs, duplicate cases (where the data for two respondents with different IDs were identical), wrong country codes, missing age, sex, education and some other important variables.
https://deepfo.com/documentacion.php?idioma=enhttps://deepfo.com/documentacion.php?idioma=en
countries that start with V. name, long name, population (source), population, constitutional form, drives on, head of state authority, Main continent, number of airports, Airports - with paved runways, Airports - with unpaved runways, Area, Birth rate, calling code, Children under the age of 5 years underweight, Current Account Balance, Death rate, Debt - external, Economic aid donor, Electricity consumption, Electricity consumption per capita, Electricity exports, Electricity imports, Electricity production, Exports, GDP - per capita (PPP), GDP (purchasing power parity), GDP real growth rate, Gross national income, Human Development Index, Health expenditures, Heliports, HIV AIDS adult prevalence rate, HIV AIDS deaths, HIV AIDS people living with HIV AIDS, Hospital bed density, capital city, Currency, Imports, Industrial production growth rate, Infant mortality rate, Inflation rate consumer prices, Internet hosts, internet tld, Internet users, Investment (gross fixed), iso 3166 code, ISO CODE, Labor force, Life expectancy at birth, Literacy, Manpower available for military service, Manpower fit for military service, Manpower reaching militarily age annually, is democracy, Market value of publicly traded shares, Maternal mortality rate, Merchant marine, Military expenditures percent of GDP, Natural gas consumption, Natural gas consumption per capita, Natural gas exports, Natural gas imports, Natural gas production, Natural gas proved reserves, Net migration rate, Obesity adult prevalence rate, Oil consumption, Oil consumption per capita, Oil exports, Oil imports, Oil production, Oil proved reserves, Physicians density, Population below poverty line, Population census, Population density, Population estimate, Population growth rate, Public debt, Railways, Reserves of foreign exchange and gold, Roadways, Stock of direct foreign investment abroad, Stock of direct foreign investment at home, Telephones main lines in use, Telephones main lines in use per capita, Telephones mobile cellular, Telephones mobile cellular per capita, Total fertility rate, Unemployment rate, Unemployment, youth ages 15-24, Waterways, valley, helicopter, canyon, artillery, crater, religion, continent, border, Plateau, marsh, Demonym
As of 2021, Asia was the most densely populated region of the world with nearly 150 inhabitants per square kilometer, whereas Oceania's population density was just over five inhabitants per square kilometer. Worldwide, the population density was 60 people per square kilometer.
The population density of Spain maintained a steadily at a rate of over 92 inhabitants per square kilometers in the last decade, with the latest figures revealing a density of 95 people per square kilometer in 2022. Spain’s degree of urbanization is rather high, with levels reaching over 81 percent of urbanization in the country. Andalusia, with a total number of 8.6 million inhabitants, ranked first on the list of most populous autonomous communities in Spain.
Population density: a world of contrast
Spain is far from the European Union’s average population density, which stood at approximately 111.89 people per square kilometer in 2021, that is, a difference of over 17 people per square meter below the average. Monaco, the country with the highest population density in the world, featured about 24,621 inhabitants per square kilometer, making Spain’s population density look minimal. The results in Macao were very similar, with a population density that reached over 21,000 people per square kilometer.
The re-population of a country
The population of Spain declined for many years during the economic recession, returning to a positive trend after 2015. The Spanish population is projected to increase by nearly two million by 2028 compared to 2024. Despite this expected increase, Spain has one of the lowest fertility rate in the European Union, with barely 1.29 children per woman according to the latest reports.
As of 2023, the population density in London was by far the highest number of people per square km in the UK, at 5,690. Of the other regions and countries which constitute the United Kingdom, North West England was the next most densely populated area at 533 people per square kilometer. Scotland, by contrast, is the most sparsely populated country or region in the United Kingdom, with only 70 people per square kilometer. UK population over 67 million According to the official mid-year population estimate, the population of the United Kingdom was just almost 67.6 million in 2022. Most of the population lived in England, where an estimated 57.1 million people resided, followed by Scotland at 5.44 million, Wales at 3.13 million and finally Northern Ireland at just over 1.9 million. Within England, the South East was the region with the highest population at almost 9.38 million, followed by the London region at around 8.8 million. In terms of urban areas, Greater London is the largest city in the United Kingdom, followed by Greater Manchester and Birmingham in the North West and West Midlands regions of England. London calling London's huge size in relation to other UK cities is also reflected by its economic performance. In 2021, London's GDP was approximately 494 billion British pounds, almost a quarter of UK GDP overall. In terms of GDP per capita, Londoners had a GDP per head of 56,431 pounds, compared with an average of 33,224 for the country as a whole. Productivity, expressed as by output per hour worked, was also far higher in London than the rest of the country. In 2021, London was around 33.2 percent more productive than the rest of the country, with South East England the only other region where productivity was higher than the national average.
In 1938, the year before the outbreak of the Second world War, the countries with the largest populations were China, the Soviet Union, and the United States, although the United Kingdom had the largest overall population when it's colonies, dominions, and metropole are combined. Alongside France, these were the five Allied "Great Powers" that emerged victorious from the Second World War. The Axis Powers in the war were led by Germany and Japan in their respective theaters, and their smaller populations were decisive factors in their defeat. Manpower as a resource In the context of the Second World War, a country or territory's population played a vital role in its ability to wage war on such a large scale. Not only were armies able to call upon their people to fight in the war and replenish their forces, but war economies were also dependent on their workforce being able to meet the agricultural, manufacturing, and logistical demands of the war. For the Axis powers, invasions and the annexation of territories were often motivated by the fact that it granted access to valuable resources that would further their own war effort - millions of people living in occupied territories were then forced to gather these resources, or forcibly transported to work in manufacturing in other Axis territories. Similarly, colonial powers were able to use resources taken from their territories to supply their armies, however this often had devastating consequences for the regions from which food was redirected, contributing to numerous food shortages and famines across Africa, Asia, and Europe. Men from annexed or colonized territories were also used in the armies of the war's Great Powers, and in the Axis armies especially. This meant that soldiers often fought alongside their former-enemies. Aftermath The Second World War was the costliest in human history, resulting in the deaths of between 70 and 85 million people. Due to the turmoil and destruction of the war, accurate records for death tolls generally do not exist, therefore pre-war populations (in combination with other statistics), are used to estimate death tolls. The Soviet Union is believed to have lost the largest amount of people during the war, suffering approximately 24 million fatalities by 1945, followed by China at around 20 million people. The Soviet death toll is equal to approximately 14 percent of its pre-war population - the countries with the highest relative death tolls in the war are found in Eastern Europe, due to the intensity of the conflict and the systematic genocide committed in the region during the war.
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second smallest country, with an area of about two square kilometers, and its population only numbers around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer stands at about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase as well. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.