The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Human population density in 2000, by terrestrial ecoregion.
We summarized human population density by ecoregion using the Gridded Population of the World database and projections for 2015 (CIESIN et al. 2005). The mean for each ecoregion was extracted using a zonal statistics algorithm.
These data were derived by The Nature Conservancy, and were displayed in a map published in The Atlas of Global Conservation (Hoekstra et al., University of California Press, 2010). More information at http://nature.org/atlas.
Data derived from:
Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3). Socioeconomic Data and Applications Center (SEDAC), Columbia University Palisades, New York. Available at http://sedac.ciesin.columbia.edu/gpw. Digital media.
United Nations Population Division (UNPD). 2007. Global population, largest urban agglomerations and cities of largest change. World Urbanization Prospects: The 2007 Revision Population Database. Available at http://esa.un.org/unup/index.asp.
For more about The Atlas of Global Conservation check out the web map (which includes links to download spatial data and view metadata) at http://maps.tnc.org/globalmaps.html. You can also read more detail about the Atlas at http://www.nature.org/science-in-action/leading-with-science/conservation-atlas.xml, or buy the book at http://www.ucpress.edu/book.php?isbn=9780520262560
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.
This polygon shapefile contains the urbanized areas of California. These data were derived from the TIGER/2000 Urbanized Areas (UA) dataset of the 1990 Census. The Census Bureau defines UAs as an area consisting of a central place(s) and adjacent urban fringe that together have a minimum residential population of at least 50,000 people and generally an overall population density of at least 1,000 people per square mile of land area. The Census Bureau uses published criteria to determine the qualification and boundaries of UAs.The U.S. Census Bureau classifies as urban all territory, population, and housing units located within urbanized areas (UAs). It delineates UA boundaries to encompass densely settled territory, which generally consists of: A cluster of one or more block groups or census blocks each of which has a population density of at least 1,000 people per square mile at the time and, Surrounding block groups and census blocks each of which has a population density of at least 500 people per square mile at the time and, Less densely settled blocks that form enclaves or indentations, or are used to connect discontiguous areas with qualifying densities. This layer is part of the Bay Area Metropolitan Transportation Commission (MTC) GIS Maps and Data collection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
50 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2050.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents. Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley. How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life? Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
The Network Adequacy Standards data is divided out by Provider Type, Adult and Pediatric separately, so that the Time or Distance analysis can be performed with greater detail. These standards differ by County due to the County "type" which is based on the population density of the county. There are 5 county categories within California; Rural (<50 people/sq mile), Small (51-200 people/sq mile), Medium (201-599 people/sq mile), and Dense (>600 people/sq mile).HospitalsOB/GYN SpecialtyAdult Cardiology/Interventional CardiologyAdult DermatologyAdult EndocrinologyAdult ENT/OtolaryngologyAdult GastroenterologyAdult General SurgeryAdult HematologyAdult HIV/AIDS/Infectious DiseaseAdult Mental Health Outpatient ServicesAdult NephrologyAdult NeurologyAdult OncologyAdult OphthalmologyAdult Orthopedic SurgeryAdult PCPAdult Physical Medicine and RehabilitationAdult PsychiatryAdult PulmonologyPediatric Cardiology/Interventional CardiologyPediatric DermatologyPediatric EndocrinologyPediatric ENT/OtolaryngologyPediatric GastroenterologyPediatric General SurgeryPediatric HematologyPediatric HIV/AIDS/Infectious DiseasePediatric Mental Health Outpatient ServicesPediatric NephrologyPediatric NeurologyPediatric OncologyPediatric OphthalmologyPediatric Orthopedic SurgeryPediatric PCPPediatric Physical Medicine and RehabilitationPediatric PsychiatryPediatric Pulmonology
CAL FIRE has a legal responsibility to provide fire protection on all State Responsibility Area (SRA) lands, which are defined based on land ownership, population density and land use. For example, CAL FIRE does not have responsibility for densely populated areas, incorporated cities, agricultural lands, or lands administered by the federal government. The SRA dataset provides areas of legal responsibility for fire protection, including State Responsibility Areas (SRA), Federal Responsibility Areas (FRA), and Local Responsibility Areas (LRA). SRA designations undergo a thorough 5 year review cycle, as well as annual updates for incorporations/annexations, error fixes, and ownership changes (automatic changes that do not require Board of Forestry approval). This service represents the latest official version, and is updated when new versions are released. As of November 15th, 2024, this represents SRA 25_1. Changes from SRA24_1 include those resulting from acquisitions and disposals of federal lands transmitted through the yearly California Wildfire Coordinating Group (CWCG) Direct Protection Area (DPA) agreement process, from city annexations and de-annexations, from changes in county parcel boundaries, as well as corrections to any data errors discovered during the editing process.
The 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 3rd Edition (1957) of the Atlas of Canada is a plate that shows the distribution of population in what is now Canada circa 1851, 1871, 1901, 1921 and 1941. The five maps display the boundaries of the various colonies, provinces and territories for each date. Also shown on these five maps are the locations of principal cities and settlements. These places are shown on all of the maps for reference purposes even though they may not have been in existence in the earlier years. Each map is accompanied by a pie chart providing the percentage distribution of Canadian population by province and territory corresponding to the date the map is based on. It should be noted that the pie chart entitled Percentage Distribution of Total Population, 1851, refers to the whole of what was then British North America. The name Canada in this chart refers to the province of Canada which entered confederation in 1867 as Ontario and Quebec. The other pie charts, however, show only percentage distribution of population in what was Canada at the date indicated. Three additional graphs are included on this plate and show changes in the distribution of the population of Canada from 1867 to 1951, changes in the percentage distribution of the population of Canada by provinces and territories from 1867 to 1951 and elements in the growth of the population of Canada for each ten-year period from 1891 to 1951.
In this dataset we present two maps that estimate the location and population served by domestic wells in the contiguous United States. The first methodology, called the “Block Group Method” or BGM, builds upon the original block-group data from the 1990 census (the last time the U.S. Census queried the population regarding their source of water) by incorporating higher resolution census block data. The second methodology, called the “Road-Enhanced Method” or REM, refines the locations by using a buffer expansion and shrinkage technique along roadways to define areas where domestic wells exist. The fundamental assumption with this method is that houses (and therefore domestic wells) are located near a named road. The results are presented as two nationally consistent domestic-well population datasets. While both methods can be considered valid, the REM map is more precise in locating domestic wells; the REM map had a smaller amount of spatial bias (nearly equal vs biased in type 1 error), total error (10.9% vs 23.7%,), and distance error (2.0 km vs 2.7 km), when comparing the REM and BGM maps to a California calibration map. However, the BGM map is more inclusive of all potential locations for domestic wells. The primary difference in the BGM and the REM is the mapping of low density areas. The REM has a 57% reduction in areas mapped as low density (populations greater than 0 but less than 1 person per km), concentrating populations into denser regions. Therefore, if one is trying to capture all of the potential areas of domestic-well usage, then the BGM map may be more applicable. If location is more imperative, then the REM map is better at identifying areas of the landscape with the highest probability of finding a domestic well. Depending on the purpose of a study, a combination of both maps can be used. For space concerns, the datasets have been divided into two separate geodatabases. The BGM map geodatabase and the REM map database.
For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail.The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts.The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate.More information about these data is available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review FAQs.Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data.Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR).1. Population Density: 2020 Population per square mile,2. Poverty Rate: Percentage of population under 100% FPL,3. Median Household income: Based on countywide median HH income of $71,538.4. Highschool Education Attainment: Percentage of 18 years and older population without high school graduation.5. English Speaking Ability: Percentage of 18 years and older population with less or none English speaking ability. 6. Household without Internet Access: Percentage of HH without internet access.7. Non-Hispanic White Population: Percentage of Non-Hispanic White population.8. Non-Hispanic African-American Population: Percentage of Non-Hispanic African-American population.9. Non-Hispanic Asian Population: Percentage of Non-Hispanic Asian population.10. Hispanic Population: Percentage of Hispanic population.
CAL FIRE has a legal responsibility to provide fire protection on all State Responsibility Area (SRA) lands, which are defined based on land ownership, population density and land use. For example, CAL FIRE does not have responsibility for densely populated areas, incorporated cities, agricultural lands, or lands administered by the federal government. The SRA dataset provides areas of legal responsibility for fire protection, including State Responsibility Areas (SRA), Federal Responsibility Areas (FRA), and Local Responsibility Areas (LRA). SRA designations undergo a thorough 5 year review cycle, as well as annual updates for incorporations/annexations, error fixes, and ownership changes (automatic changes that do not require Board of Forestry approval). This service represents the latest official version, and is updated when new versions are released. As of November 15th, 2024, this represents SRA 25_1. Changes from SRA24_1 include those resulting from acquisitions and disposals of federal lands transmitted through the yearly California Wildfire Coordinating Group (CWCG) Direct Protection Area (DPA) agreement process, from city annexations and de-annexations, from changes in county parcel boundaries, as well as corrections to any data errors discovered during the editing process.
The 2019 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
The site suitability criteria included in the techno-economic land use screens are listed below. As this list is an update to previous cycles, tribal lands, prime farmland, and flood zones are not included as they are not technically infeasible for development. The techno-economic site suitability exclusion thresholds are presented in table 1. Distances indicate the minimum distance from each feature for commercial scale wind developmentAttributes: Steeply sloped areas: change in vertical elevation compared to horizontal distancePopulation density: the number of people living in a 1 km2 area Urban areas: defined by the U.S. Census. Water bodies: defined by the U.S. National Atlas Water Feature Areas, available from Argonne National Lab Energy Zone Mapping Tool Railways: a comprehensive database of North America's railway system from the Federal Railroad Administration (FRA), available from Argonne National Lab Energy Zone Mapping Tool Major highways: available from ESRI Living Atlas Airports: The Airports dataset including other aviation facilities as of July 13, 2018 is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). The Airports database is a geographic point database of aircraft landing facilities in the United States and U.S. Territories. Attribute data is provided on the physical and operational characteristics of the landing facility, current usage including enplanements and aircraft operations, congestion levels and usage categories. This geospatial data is derived from the FAA's National Airspace System Resource Aeronautical Data Product. Available from Argonne National Lab Energy Zone Mapping Tool Active mines: Active Mines and Mineral Processing Plants in the United States in 2003Military Lands: Land owned by the federal government that is part of a US military base, camp, post, station, yard, center, or installation. Table 1 Wind Steeply sloped areas >10o Population density >100/km2 Capacity factor <20% Urban areas <1000 m Water bodies <250 m Railways <250 m Major highways <125 m Airports <5000 m Active mines <1000 m Military Lands <3000m For more information about the processes and sources used to develop the screening criteria see sources 1-7 in the footnotes. Data updates occur as needed, corresponding to typical 3-year CPUC IRP planning cyclesFootnotes:[1] Lopez, A. et. al. “U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis,” 2012. https://www.nrel.gov/docs/fy12osti/51946.pdf[2] https://greeningthegrid.org/Renewable-Energy-Zones-Toolkit/topics/social-environmental-and-other-impacts#ReadingListAndCaseStudies[3] Multi-Criteria Analysis for Renewable Energy (MapRE), University of California Santa Barbara. https://mapre.es.ucsb.edu/[4] Larson, E. et. al. “Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Interim Report.” Princeton University, 2020. https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf.[5] Wu, G. et. al. “Low-Impact Land Use Pathways to Deep Decarbonization of Electricity.” Environmental Research Letters 15, no. 7 (July 10, 2020). https://doi.org/10.1088/1748-9326/ab87d1.[6] RETI Coordinating Committee, RETI Stakeholder Steering Committee. “Renewable Energy Transmission Initiative Phase 1B Final Report.” California Energy Commission, January 2009.[7] Pletka, Ryan, and Joshua Finn. “Western Renewable Energy Zones, Phase 1: QRA Identification Technical Report.” Black & Veatch and National Renewable Energy Laboratory, 2009. https://www.nrel.gov/docs/fy10osti/46877.pdf.[8]https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Urban+Areas[9]https://ezmt.anl.gov/[10]https://www.arcgis.com/home/item.html?id=fc870766a3994111bce4a083413988e4[11]https://mrdata.usgs.gov/mineplant/Credits Title: Techno-economic screening criteria for utility-scale wind energy installations for Integrated Resource Planning Purpose for creation: These site suitability criteria are for use in electric system planning, capacity expansion modeling, and integrated resource planning. Keywords: wind energy, resource potential, techno-economic, IRP Extent: western states of the contiguous U.S. Use Limitations The geospatial data created by the use of these techno-economic screens inform high-level estimates of technical renewable resource potential for electric system planning and should not be used, on their own, to guide siting of generation projects nor assess project-level impacts.Confidentiality: Public ContactEmily Leslie Emily@MontaraMtEnergy.comSam Schreiber sam.schreiber@ethree.com Jared Ferguson Jared.Ferguson@cpuc.ca.govOluwafemi Sawyerr femi@ethree.com
This dataset (SRA13_1) represents our initial determination of SRA status as of 7/1/13. After comparing SRA parcels to assessor roll files, a final determination of SRA status as of 7/1/13 will be reflected in SRA13_2. SRA13_1 includes numerous annexations affecting SRA status that have occurred since 7/1/2012. CAL FIRE has a legal responsibility to provide fire protection on all State Responsibility Area (SRA) lands, which are defined based on land ownership, population density and land use. For example, CAL FIRE does not have responsibility for densely populated areas, incorporated cities, agricultural lands, or lands administered by the federal government. The SRA dataset provides areas of legal responsibility for fire protection, including State Responsibility Areas (SRA), Federal Responsibility Areas (FRA), and Local Responsibility Areas (LRA). SRA designations undergo a thorough 5 year review cycle, as well as annual updates for incorporations/annexations, error fixes, and ownership changes (automatic changes that do not require Board of Forestry approval). In addition, CAL FIRE is now responsible for determining parcels subject to the SRA Fire Prevention Fee under AB X1 29. As part of the SRA Fee process, CAL FIRE performs an annual comparison of SRA data to assessor roll files, to identify SRA parcels that are actually federally owned (FRA) or part of an incorporated city (LRA).
© Numerous federal agencies have provided data that help us to identify FRA lands (BLM, U.S. Forest Service, National Park Service, U.S. Fish and Wildlife Service, Bureau of Indian Affairs). This layer is a component of Fire Hazard Severity Zones.
This map shows the Fire Hazard Severity Zones (FHSZ) mapped by the California of Forestry and Fire Potection (CAL FIRE). More information at CalFire (http://frap.cdf.ca.gov/projects/hazard/fhz.php)
DISCLAIMER
The State of California and the Department of Forestry and Fire Protection make no representations or warranties regarding the accuracy of data or maps. The user will not seek to hold the State or the Department liable under any circumstances for any damages with respect to any claim by the user or any third party on account of or arising from the use of data or maps.
OTHER LIMITATIONS
There are no restrictions on distribution of the data by users. However, users are encouraged to refer others to the Department of Forestry and Fire Protection to acquire the data, in case updated data become available. The user will cite the California Department of Forestry and Fire Protection as the original source of the data, but will clearly denote cases where the original data have been altered, updated, or in any way changed from the original condition.
© CalFire (http://frap.cdf.ca.gov/)