Facebook
TwitterThe Census Bureau released revised delineations for urban areas on December 29, 2022. The new criteria (contained in this Federal Register Notice) is based primarily on housing unit density measured at the census block level. The minimum qualifying threshold for inclusion as an urban area is an area that contains at least 2,000 housing units or has a population of at least 5,000 persons. It also eliminates the classification of areas as “urban clusters/urbanized areas”. This represents a change from 2010, where urban areas were defined as areas consisting of 50,000 people or more and urban clusters consisted of at least 2,500 people but less than 50,000 people with at least 1,500 people living outside of group quarters. Due to the new population thresholds for urban areas, 36 urban clusters in California are no longer considered urban areas, leaving California with 193 urban areas after the new criteria was implemented.
The State of California experienced an increase of 1,885,884 in the total urban population, or 5.3%. However, the total urban area population as a percentage of the California total population went down from 95% to 94.2%. For more information about the mapped data, download the Excel spreadsheet here.
Please note that some of the 2020 urban areas have different names or additional place names as a result of the inclusion of housing unit counts as secondary naming criteria.
Please note there are four urban areas that cross state boundaries in Arizona and Nevada. For 2010, only the parts within California are displayed on the map; however, the population and housing estimates represent the entirety of the urban areas. For 2020, the population and housing unit estimates pertains to the areas within California only.
Data for this web application was derived from the 2010 and 2020 Censuses (2010 and 2020 Census Blocks, 2020 Urban Areas, and Counties) and the 2016-2020 American Community Survey (2010 -Urban Areas) and can be found at data.census.gov.
For more information about the urban area delineations, visit the Census Bureau's Urban and Rural webpage and FAQ.
To view more data from the State of California Department of Finance, visit the Demographic Research Unit Data Hub.
Facebook
TwitterUpdated 10/6/2022: In the Time/Distance analysis process, points that were found to have been included initially, but with no significant or year-round population were removed. The layer of removed points is also available for viewing. MCNA - Removed Population PointsThe Network Adequacy Standards Representative Population Points feature layer contains 97,694 points spread across California that were created from USPS postal delivery route data and US Census data. Each population point also contains the variables for Time and Distance Standards for the County that the point is within. These standards differ by County due to the County "type" which is based on the population density of the county. There are 5 county categories within California: Rural (<50 people/sq mile), Small (51-200 people/sq mile), Medium (201-599 people/sq mile), and Dense (>600 people/sq mile). The Time and Distance data is divided out by Provider Type, Adult and Pediatric separately, so that the Time or Distance analysis can be performed with greater detail. HospitalsOB/GYN SpecialtyAdult Cardiology/Interventional CardiologyAdult DermatologyAdult EndocrinologyAdult ENT/OtolaryngologyAdult GastroenterologyAdult General SurgeryAdult HematologyAdult HIV/AIDS/Infectious DiseaseAdult Mental Health Outpatient ServicesAdult NephrologyAdult NeurologyAdult OncologyAdult OphthalmologyAdult Orthopedic SurgeryAdult PCPAdult Physical Medicine and RehabilitationAdult PsychiatryAdult PulmonologyPediatric Cardiology/Interventional CardiologyPediatric DermatologyPediatric EndocrinologyPediatric ENT/OtolaryngologyPediatric GastroenterologyPediatric General SurgeryPediatric HematologyPediatric HIV/AIDS/Infectious DiseasePediatric Mental Health Outpatient ServicesPediatric NephrologyPediatric NeurologyPediatric OncologyPediatric OphthalmologyPediatric Orthopedic SurgeryPediatric PCPPediatric Physical Medicine and RehabilitationPediatric PsychiatryPediatric Pulmonology
Facebook
TwitterThe 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterIn 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 3rd Edition (1957) of the Atlas of Canada is a plate that shows the distribution of population in what is now Canada circa 1851, 1871, 1901, 1921 and 1941. The five maps display the boundaries of the various colonies, provinces and territories for each date. Also shown on these five maps are the locations of principal cities and settlements. These places are shown on all of the maps for reference purposes even though they may not have been in existence in the earlier years. Each map is accompanied by a pie chart providing the percentage distribution of Canadian population by province and territory corresponding to the date the map is based on. It should be noted that the pie chart entitled Percentage Distribution of Total Population, 1851, refers to the whole of what was then British North America. The name Canada in this chart refers to the province of Canada which entered confederation in 1867 as Ontario and Quebec. The other pie charts, however, show only percentage distribution of population in what was Canada at the date indicated. Three additional graphs are included on this plate and show changes in the distribution of the population of Canada from 1867 to 1951, changes in the percentage distribution of the population of Canada by provinces and territories from 1867 to 1951 and elements in the growth of the population of Canada for each ten-year period from 1891 to 1951.
Facebook
TwitterThis is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Network Adequacy Standards data is divided out by Provider Type, Adult and Pediatric separately, so that the Time or Distance analysis can be performed with greater detail. These standards differ by County due to the County "type" which is based on the population density of the county. There are 5 county categories within California; Rural (<50 people/sq mile), Small (51-200 people/sq mile), Medium (201-599 people/sq mile), and Dense (>600 people/sq mile).
Facebook
TwitterFor the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail.The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts.The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate.More information about these data is available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review FAQs.Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data.Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR).1. Population Density: 2020 Population per square mile,2. Poverty Rate: Percentage of population under 100% FPL,3. Median Household income: Based on countywide median HH income of $71,538.4. Highschool Education Attainment: Percentage of 18 years and older population without high school graduation.5. English Speaking Ability: Percentage of 18 years and older population with less or none English speaking ability. 6. Household without Internet Access: Percentage of HH without internet access.7. Non-Hispanic White Population: Percentage of Non-Hispanic White population.8. Non-Hispanic African-American Population: Percentage of Non-Hispanic African-American population.9. Non-Hispanic Asian Population: Percentage of Non-Hispanic Asian population.10. Hispanic Population: Percentage of Hispanic population.
Facebook
TwitterThe 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.
Facebook
TwitterIn this dataset we present two maps that estimate the location and population served by domestic wells in the contiguous United States. The first methodology, called the “Block Group Method” or BGM, builds upon the original block-group data from the 1990 census (the last time the U.S. Census queried the population regarding their source of water) by incorporating higher resolution census block data. The second methodology, called the “Road-Enhanced Method” or REM, refines the locations by using a buffer expansion and shrinkage technique along roadways to define areas where domestic wells exist. The fundamental assumption with this method is that houses (and therefore domestic wells) are located near a named road. The results are presented as two nationally consistent domestic-well population datasets. While both methods can be considered valid, the REM map is more precise in locating domestic wells; the REM map had a smaller amount of spatial bias (nearly equal vs biased in type 1 error), total error (10.9% vs 23.7%,), and distance error (2.0 km vs 2.7 km), when comparing the REM and BGM maps to a California calibration map. However, the BGM map is more inclusive of all potential locations for domestic wells. The primary difference in the BGM and the REM is the mapping of low density areas. The REM has a 57% reduction in areas mapped as low density (populations greater than 0 but less than 1 person per km), concentrating populations into denser regions. Therefore, if one is trying to capture all of the potential areas of domestic-well usage, then the BGM map may be more applicable. If location is more imperative, then the REM map is better at identifying areas of the landscape with the highest probability of finding a domestic well. Depending on the purpose of a study, a combination of both maps can be used. For space concerns, the datasets have been divided into two separate geodatabases. The BGM map geodatabase and the REM map database.
Facebook
TwitterMedical Service Study Areas - Census Detail, 2010California Health & Human Services Agency Open Data Portal DescriptionMedical Service Study Areas (MSSAs) are sub-city and sub-county geographical units used to organize and display population, demographic and physician data. MSSAs were developed in 1976 by the California Healthcare Workforce Policy Commission (formerly California Health Manpower Policy Commission) to respond to legislative mandates requiring it to determine "areas of unmet priority need for primary care family physicians" (Song-Brown Act of 1973) and "geographical rural areas where unmet priority need for medical services exist" (Garamendi Rural Health Services Act of 1976).MSSAs are recognized by the U.S. Health Resources and Services Administration, Bureau of Health Professions' Office of Shortage Designation as rational service areas for purposes of designating Health Professional Shortage Areas (HPSAs), and Medically Underserved Areas and Medically Underserved Populations (MUAs/MUPs).The MSSAs incorporate the U.S. Census total population, socioeconomic and demographic data and are updated with each decadal census. Office of Statewide Health Planning and Development provides updated data for each County's MSSAs to the County and Communities, and will schedule meetings for areas of significant population change. Community meetings will be scheduled throughout the State as needed.Adopted by the California Healthcare Workforce Policy Commission on May 15, 2002.Each MSSA is composed of one or more complete census tracts. MSSAs will not cross county lines. All population centers within the MSSA are within 30 minutes travel time to the largest population center.Urban MSSA - Population range 75,000 to 125,000. Reflect recognized community and neighborhood boundaries. Similar demographic and socio-economic characteristics.Rural MSSA - Population density of less than 250 persons per square mile. No population center exceeds 50,000.Frontier MSSA - Population density of less than 11 persons per square mile.
Facebook
TwitterCAL FIRE has a legal responsibility to provide fire protection on all State Responsibility Area (SRA) lands, which are defined based on land ownership, population density and land use. For example, CAL FIRE does not have responsibility for densely populated areas, incorporated cities, agricultural lands, or lands administered by the federal government. The SRA dataset provides areas of legal responsibility for fire protection, including State Responsibility Areas (SRA), Federal Responsibility Areas (FRA), and Local Responsibility Areas (LRA). SRA designations undergo a thorough 5 year review cycle, as well as annual updates for incorporations/annexations, error fixes, and ownership changes (automatic changes that do not require Board of Forestry approval). This service represents the latest official version, and is updated when new versions are released. As of November 15th, 2024, this represents SRA 25_1. Changes from SRA24_1 include those resulting from acquisitions and disposals of federal lands transmitted through the yearly California Wildfire Coordinating Group (CWCG) Direct Protection Area (DPA) agreement process, from city annexations and de-annexations, from changes in county parcel boundaries, as well as corrections to any data errors discovered during the editing process.
Facebook
TwitterIn 2017, the California Tax Credit Allocation Committee (CTCAC) and the Department of Housing and Community Development (HCD) created the California Fair Housing Task Force (Task Force). The Task Force was asked to assist CTCAC and HCD in creating evidence-based approaches to increasing access to opportunity for families with children living in housing subsidized by the Low-Income Housing Tax Credit (LIHTC) program.
This feature set contains Resource Opportunity Areas (ROAs) that are the results of the Task Force's analysis for the two regions used for the San Francisco Bay Region; one is for the cities and towns (urban) and the other is for the rural areas. The reason for treating urban and rural areas as separate reasons is that using absolute thresholds for place-based opportunity could introduce comparisons between very different areas of the total region that make little sense from a policy perspective — in effect, holding a farming community to the same standard as a dense, urbanized neighborhood.
ROA analysis for urban areas is based on census tract data. Since tracts in rural areas of are approximately 37 times larger in land area than tracts in non-rural areas, tract-level data in rural areas may mask over variation in opportunity and resources within these tracts. Assessing opportunity at the census block group level in rural areas reduces this difference by 90 percent (each rural tract contains three block groups), and thus allows for finer-grained analysis.
In addition, more consistent standards can be useful for identifying areas of concern from a fair housing perspective — such as high-poverty and racially segregated areas. Assessing these factors based on intraregional comparison could mischaracterize areas in more affluent areas with relatively even and equitable development opportunity patterns as high-poverty, and could generate misleading results in areas with higher shares of objectively poor neighborhoods by holding them to a lower, intraregional standard.
To avoid either outcome, the Task Force used a hybrid approach for the CTCAC/HCD ROA analysis — accounting for regional differences in assessing opportunity for most places, while applying more rigid standards for high-poverty, racially segregated areas in all regions. In particular:
Filtering for High-Poverty, Racially Segregated Areas The CTCAC/HCD ROA filters areas that meet consistent standards for both poverty (30% of the population below the federal poverty line) and racial segregation (over-representation of people of color relative to the county) into a “High Segregation & Poverty” category. The share of each region that falls into the High Segregation & Poverty category varies from region to region.
Calculating Index Scores for Non-Filtered Areas The CTCAC/HCD ROAs process calculates regionally derived opportunity index scores for non-filtered tracts and rural block groups using twenty-one indicators (see Data Quality section of metadata for more information). These index scores make it possible to sort each non-filtered tract or rural block group into opportunity categories according to their rank within the urban or rural areas.
To allow CTCAC and HCD to incentivize equitable development patterns in each region to the same degree, the CTCAC/HCD analysis 20 percent of tracts or rural block groups in each urban or rural area, respectively, with the highest relative index scores to the "Highest Resource” designation and the next 20 percent to the “High Resource” designation.
The region's urban area thus ends up with 40 percent of its total tracts with reliable data as Highest or High Resource (or 40 percent of block groups in the rural area). The remaining non-filtered tracts or rural block groups are then evenly divided into “Low Resource” and “Moderate Resource” categories.
Excluding Tracts or Block Groups The analysis also excludes certain census areas from being categorized. To improve the accuracy of the mapping, tracts and rural block groups with the following characteristics are excluded from the application of the filter and from categorization based on index scores: ● Areas with unreliable data, as defined later in this document; ● Areas where prisoners make up at least 75 percent of the population; ● Areas with population density below 15 people per square mile and total population below 500; and ● Areas where at least half of the age 16+ population is employed by the armed forces, in order to exclude military base areas where it is not possible to develop non-military affordable housing.
Excluded tracts and rural block groups are identified as “nan” in the attribute table.
The full methodology used by the Task Force can be found in the California Fair Housing Task Force Opportunity Mapping Methodology report (https://www.treasurer.ca.gov/ctcac/opportunity/2022/2022-hcd-methodology.pdf) on the California Office of State Treasurer website.
Source data and maps can be found on the CTCAC/HCD Opportunity Area Maps page (https://www.treasurer.ca.gov/ctcac/opportunity.asp).
Facebook
TwitterThe 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
Facebook
TwitterRace is a social and historical construct, and the racial categories counted by the census change over time so the process of constructing stable racial categories for these 50 years out of census data required complex and imperfect decisions. Here we have used historical research on early 20th century southern California to construct historic racial categories from the IPUMS full count data, which allows us to track groups that were not formally classified as racial groups in some census decades like Mexican, but which were important racial categories in southern California. Detailed explanation of how we constructed these categories and the rationale we used for the decisions we made can be found here. Layers are symbolized to show the percentage of each of the following groups from 1900-1940:AmericanIndian Not-Hispanic, AmericanIndian Hispanic, Black non-Hispanic, Black-Hispanic, Chinese, Korean, Filipino and Japanese, Mexican, Hispanic Not-Mexican, white non-Hispanic. The IPUMS Census data is messy and includes some errors and undercounts, making it hard to map some smaller populations, like Asian Indians (in census called Hindu in 1920) and creating a possible undercount of Native American populations. The race data mapped here also includes categories that may not have been socially meaningful at the time like Black-Hispanic, which generally would represent people from Mexico who the census enumerator classified as Black because of their dark skin, but who were likely simply part of Mexican communities at the time. We have included maps of the Hispanic not-Mexican category which shows very small numbers of non-Mexican Hispanic population, and American Indian Hispanic, which often captures people who would have been listed as Indian in the census, probably because of skin color, but had ancestry from Mexico (or another Hispanic country). This category may include some indigenous Californians who married into or assimilated into Mexican American communities in the early 20th century. If you are interested in mapping some of the other racial or ethnic groups in the early 20th century, you can explore and map the full range of variables we have created in the People's History of the IE IE_ED1900-1940 Race Hispanic Marriage and Age Feature layer.Suggested Citation: Tilton, Jennifer. People's History Race Ethnicity Dot Density Map 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. 2025Feature Layer CitationTilton, Jennifer, Tessa VanRy & Lisa Benvenuti. Race and Demographic Data 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. Additional contributing authors: Mackenzie Nelson, Will Blach & Andy Garcia Funding provided by: People’s History of the IE: Storyscapes of Race, Place, and Queer Space in Southern California with funding from NEH-SSRC Grant 2022-2023 & California State Parks grant to Relevancy & History. Source for Census Data 1900- 1940 Ruggles, Steven, Catherine A. Fitch, Ronald Goeken, J. David Hacker, Matt A. Nelson, Evan Roberts, Megan Schouweiler, and Matthew Sobek. IPUMS Ancestry Full Count Data: Version 3.0 [dataset]. Minneapolis, MN: IPUMS, 2021. Primary Sources for Enumeration District Linework 1900-1940 Steve Morse provided the full list of transcribed EDs for all 5 decades "United States Enumeration District Maps for the Twelfth through the Sixteenth US Censuses, 1900-1940." Images. FamilySearch. https://FamilySearch.org: 9 February 2023. Citing NARA microfilm publication A3378. Washington, D.C.: National Archives and Records Administration, 2003. BLM PLSS Map Additional Historical Sources consulted include: San Bernardino City Annexation GIS Map Redlands City Charter Proposed with Ward boundaries (Not passed) 1902. Courtesy of Redlands City Clerk. Redlands Election Code Precincts 1908, City Ordinances of the City of Redlands, p. 19-22. Courtesy of Redlands City Clerk Riverside City Charter 1907 (for 1910 linework) courtesy of Riverside City Clerk. 1900-1940 Raw Census files for specific EDs, to confirm boundaries when needed, accessed through Family Search. If you have additional questions or comments, please contact jennifer_tilton@redlands.edu.
Facebook
TwitterQuantitative assessment of spatial patterns of all human uses of the oceans and their cumulative effects is needed for implementing ecosystem-based management, marine protected areas, and ocean zoning. Researchers applied methods developed to map cumulative impacts globally to the California Current using more comprehensive and higher-quality data for 25 human activities and 19 marine ecosystems. They first surveyed experts in six sub-regions of the California Current to explore geographic variation in the effects of threats. A workshop was held to use decision theory to evaluate the tradeoffs of using expert opinion to assess threats and associated impacts. Data on ecosystems and threats were gathered at resolutions of approximately one square kilometer. By synthesizing information and inferences regarding anticipated impacts of threats, project participants developed a spatially-explicit understanding of the distribution and magnitude of human threats in the California Current. The analysis indicates where protection and threat mitigation are most needed in the California Current and reveals that coastal ecosystems near high human population density and the continental shelves off Oregon and Washington are the most heavily impacted. Climate change is the top threat, and impacts from multiple threats are ubiquitous. Remarkably, these results were highly spatially correlated with the global results for this region (R2=.92), suggesting that the global model provides guidance to areas without local data or resources to conduct similar regional-scale analyses. This dataset contains raster layers for the 25 human activities and 19 ecosystems used to build the cumulative impact model in the California Current marine ecosystems. A zip file for all impacts, a zip file for all ecosystems, and a raster of the final model are included along with the individual impacts and ecosystems raster layers. For more information on methods, see Halpern et al, Mapping cumulative human impacts to California Current marine ecosystems. Conservation Letters, 2009. https://doi.org/10.1111/j.1755-263X.2009.00058.x
Facebook
TwitterThe site suitability criteria included in the techno-economic land use screens are listed below. As this list is an update to previous cycles, tribal lands, prime farmland, and flood zones are not included as they are not technically infeasible for development. The techno-economic site suitability exclusion thresholds are presented in table 1. Distances indicate the minimum distance from each feature for commercial scale wind developmentAttributes: Steeply sloped areas: change in vertical elevation compared to horizontal distancePopulation density: the number of people living in a 1 km2 area Urban areas: defined by the U.S. Census. Water bodies: defined by the U.S. National Atlas Water Feature Areas, available from Argonne National Lab Energy Zone Mapping Tool Railways: a comprehensive database of North America's railway system from the Federal Railroad Administration (FRA), available from Argonne National Lab Energy Zone Mapping Tool Major highways: available from ESRI Living Atlas Airports: The Airports dataset including other aviation facilities as of July 13, 2018 is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). The Airports database is a geographic point database of aircraft landing facilities in the United States and U.S. Territories. Attribute data is provided on the physical and operational characteristics of the landing facility, current usage including enplanements and aircraft operations, congestion levels and usage categories. This geospatial data is derived from the FAA's National Airspace System Resource Aeronautical Data Product. Available from Argonne National Lab Energy Zone Mapping Tool Active mines: Active Mines and Mineral Processing Plants in the United States in 2003Military Lands: Land owned by the federal government that is part of a US military base, camp, post, station, yard, center, or installation. Table 1 Wind Steeply sloped areas >10o Population density >100/km2 Capacity factor <20% Urban areas <1000 m Water bodies <250 m Railways <250 m Major highways <125 m Airports <5000 m Active mines <1000 m Military Lands <3000m For more information about the processes and sources used to develop the screening criteria see sources 1-7 in the footnotes. Data updates occur as needed, corresponding to typical 3-year CPUC IRP planning cyclesFootnotes:[1] Lopez, A. et. al. “U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis,” 2012. https://www.nrel.gov/docs/fy12osti/51946.pdf[2] https://greeningthegrid.org/Renewable-Energy-Zones-Toolkit/topics/social-environmental-and-other-impacts#ReadingListAndCaseStudies[3] Multi-Criteria Analysis for Renewable Energy (MapRE), University of California Santa Barbara. https://mapre.es.ucsb.edu/[4] Larson, E. et. al. “Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Interim Report.” Princeton University, 2020. https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf.[5] Wu, G. et. al. “Low-Impact Land Use Pathways to Deep Decarbonization of Electricity.” Environmental Research Letters 15, no. 7 (July 10, 2020). https://doi.org/10.1088/1748-9326/ab87d1.[6] RETI Coordinating Committee, RETI Stakeholder Steering Committee. “Renewable Energy Transmission Initiative Phase 1B Final Report.” California Energy Commission, January 2009.[7] Pletka, Ryan, and Joshua Finn. “Western Renewable Energy Zones, Phase 1: QRA Identification Technical Report.” Black & Veatch and National Renewable Energy Laboratory, 2009. https://www.nrel.gov/docs/fy10osti/46877.pdf.[8]https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Urban+Areas[9]https://ezmt.anl.gov/[10]https://www.arcgis.com/home/item.html?id=fc870766a3994111bce4a083413988e4[11]https://mrdata.usgs.gov/mineplant/Credits Title: Techno-economic screening criteria for utility-scale wind energy installations for Integrated Resource Planning Purpose for creation: These site suitability criteria are for use in electric system planning, capacity expansion modeling, and integrated resource planning. Keywords: wind energy, resource potential, techno-economic, IRP Extent: western states of the contiguous U.S. Use Limitations The geospatial data created by the use of these techno-economic screens inform high-level estimates of technical renewable resource potential for electric system planning and should not be used, on their own, to guide siting of generation projects nor assess project-level impacts.Confidentiality: Public ContactEmily Leslie Emily@MontaraMtEnergy.comSam Schreiber sam.schreiber@ethree.com Jared Ferguson Jared.Ferguson@cpuc.ca.govOluwafemi Sawyerr femi@ethree.com
Facebook
TwitterThis project was initiated by the CDFW Central Region and was conducted on a portion of the Tuolumne herd that migrate to the Jawbone Ridge flats in the winter in Tuolumne County, Mariposa County, and Alpine County. Jawbone Ridge and the adjacent winter range habitat was further divided into the Clavey and Cherry sub-herd units. Additionally, a small sample of deer were captured from the Yosemite herd (south of the Tuolumne herd) to determine herd overlap. The raw dataset consisted of GPS way points collected from Advanced Telemetry Solutions (ATS) store on board GPS collars (G2110B/D model) and were placed on female mule deer only. Individuals were captured via darting or clover traps. This data was collected from 2009-2015 by Nathan Graveline and Ronald Anderson. GPS collars were set to take a location every 7 hours, and emit a signal Monday through Friday, 9am to 5pm. Some GPS collars were set to take a location fix every hour during periods of time when deer were thought to be migrating (May and November). The Clavey and Cherry sub-herd units support the highest concentration of wintering deer within the Tuolumne deer herd range. The majority of deer in these two sub-herds migrate east into the Emigrant and Yosemite Wilderness, with a few heading north to the Carson-Iceberg Wilderness. Low density populations of non-migratory deer are present in the winter range. Forest practices, wildfires, and recreation (hunting, camping, OHV) represent the most significant impacts to this herd. To improve the quality of the data set as per Bjørneraas et al. (2010), theGPS data were filtered prior to analysis to remove locations which were: i) further from either the previous point or subsequent point than an individual deer is able to travel in the elapsed time, ii) forming spikes in the movement trajectory based on outgoing and incoming speeds and turning angles sharper than a predefined threshold , or iii) fixed in 2D space and visually assessed as a bad fix by the analyst. The methodology used for this migration analysis allowed for the mapping of winter ranges and the identification and prioritization of migration corridors in a single deer population. Brownian Bridge Movement Models (BBMMs; Sawyer et al. 2009) were constructed with GPS collar data from 83 deer, including location, date, time, and average location error as inputs in Migration Mapper. 245 migration sequences were used in the modeling analysis. Corridors and stopovers were prioritized based on the number of animals moving through a particular area. BBMMs were produced at a spatial resolution of 50 m using a sequential fix interval of less than 27 hours. Due to varying fix rates, separate models using Brownian bridge movement models (BMMM) and fixed motion variances of 1000 were produced per migration sequence and visually compared for the entire dataset, with best models being combined prior to population-level analyses (25% of sequences selected with BMMM). Migration corridors, stopovers, and winter range analyses were produced separately for the Yosemite Herd sample (n = 6) and merged with the Tuolumne dataset given the smaller capture effort and intention to prioritize moderate and high use corridors specifically in the Tuolumne herd. Winter range analyses were based on data from 85 individual deer in total. A separate BBMM was created for all deer locations designated as winter range using a fixed motion variance parameter of 1000. Winter range designations for this herd would likely expand with a larger sample south of Jawbone Ridge (Yosemite Herd) due to a small capture sample size from this area, filling in some of the gaps between winter range polygons in the map. Large water bodies were clipped from the final outputs.Corridors are visualized based on deer use per cell in the BBMMs, with greater than or equal to 1 deer, greater than or equal to 9 deer (10% of the sample), and greater than or equal to 17 deer (20% of the sample) representing migration corridors, moderate use, and high use corridors, respectively. Stopovers were calculated as the top 10 percent of the population level utilization distribution during migrations and can be interpreted as high use areas. Stopover polygon areas less than 20,000 m2were removed, but remaining small stopovers may be interpreted as short-term resting sites, likely based on a small concentration of points from an individual animal. Winter range is visualized as the 50thpercentile contour of the winter range utilization distribution.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This map shows four of these densely populated areas are in California. The San Francisco-Oakland and San Jose Urban Areas rank second and third, respectively. That the New York Metropolitan area ranks fifth on this list shows that this density ranking is greatly affected by the nature of the land area designated as urban. Census Urban Areas comprise an urban core and associated suburbs. California's urban and suburban areas are more uniform in density when compared to New York's urban core and suburban periphery which have vastly different densities. Delano ranks fourth because it has a very small land area and its population is augmented by two large California State Prisons housing 10,000 inmates.
Facebook
TwitterThe SCAG_ATDB_Healthy shapefile contains Census tract level food access, retail density, park access, tree canopy coverage, and Healthy Places Index (HPI) score data of the SCAG region. Food access data for 2015 (data source: USDA FARA 2017) includes the percentage of the urban population residing less than 1/2 mile from a supermarket/large grocery store, or the percentage of the rural population living less than 1 mile from a supermarket/large grocery store. Retail density data (data source: EPA Smart Location Database 2010) includes the gross retail, entertainment, and education employment density (jobs/acre) on unprotected land. Park access data (data source: HCI/CalLands Database 2010) includes the percentage of population living within a half-mile of a park, open space, or beach. Tree canopy coverage data (data source: HCI/National Land Cover Database 2011) includes population-weighted percentage of census tract area with tree canopy coverage. The HPI score (version: December 2017) is composed of diverse non-medical economic, social, political and environmental factors that influence physical and cognitive function, behavior and disease. These factors are often called health determinants or social determinants of health and form the root causes of health advantage. Indicator data used for HPI comes from publicly available sources and is produced at a census tract level. The HPI score was derived from 8 domain scores, 25 Individual indicators + race/ethnicity percent (8057 CTs). HPI materials will be made freely available online for use by communities and public and private agencies. More info at: http://phasocal.org/ca-hpi/
Facebook
TwitterThe Census Bureau released revised delineations for urban areas on December 29, 2022. The new criteria (contained in this Federal Register Notice) is based primarily on housing unit density measured at the census block level. The minimum qualifying threshold for inclusion as an urban area is an area that contains at least 2,000 housing units or has a population of at least 5,000 persons. It also eliminates the classification of areas as “urban clusters/urbanized areas”. This represents a change from 2010, where urban areas were defined as areas consisting of 50,000 people or more and urban clusters consisted of at least 2,500 people but less than 50,000 people with at least 1,500 people living outside of group quarters. Due to the new population thresholds for urban areas, 36 urban clusters in California are no longer considered urban areas, leaving California with 193 urban areas after the new criteria was implemented.
The State of California experienced an increase of 1,885,884 in the total urban population, or 5.3%. However, the total urban area population as a percentage of the California total population went down from 95% to 94.2%. For more information about the mapped data, download the Excel spreadsheet here.
Please note that some of the 2020 urban areas have different names or additional place names as a result of the inclusion of housing unit counts as secondary naming criteria.
Please note there are four urban areas that cross state boundaries in Arizona and Nevada. For 2010, only the parts within California are displayed on the map; however, the population and housing estimates represent the entirety of the urban areas. For 2020, the population and housing unit estimates pertains to the areas within California only.
Data for this web application was derived from the 2010 and 2020 Censuses (2010 and 2020 Census Blocks, 2020 Urban Areas, and Counties) and the 2016-2020 American Community Survey (2010 -Urban Areas) and can be found at data.census.gov.
For more information about the urban area delineations, visit the Census Bureau's Urban and Rural webpage and FAQ.
To view more data from the State of California Department of Finance, visit the Demographic Research Unit Data Hub.